The Joy of Why
We have identified thousands of planets just in our neighborhood in the Milky Way, mostly from the way they impact their host stars. Basic calculations suggest that there are countless more across the galaxy, and that billions of them could potentially support life. But what kind of life they host, and how we would be able to detect the presence of those biological processes from Earth, remain big questions in the world of exoplanets and astrobiology. What technologies might lie ahead to help us answer the question of whether we are alone in the universe?
 Lisa Kaltenegger, an astrophysicist and astrobiologist at Cornell University, talks to Janna Levin about that search, the atmospheric fingerprints of life, and why an advanced alien civilization might decide not to talk to us.Â
Death might seem like a pure loss, the disappearance of what makes a living thing distinct from everything else on our planet. But zoom in closer, to the cellular level, and death takes on a different, more nuanced meaning. There is a challenge in simply defining what makes an individual cell alive or dead. Scientists today are working to understand the various ways and reasons that cells disappear, and what these processes mean to biological systems.Â
In this episode, cellular biologist Shai Shaham talks to Steven Strogatz about the different forms of cell death, their roles in evolution and disease, and why the right kinds and patterns of cell death are essential to our development and well-being.
It’s fair to say that enjoyment of a podcast would be severely limited without the human capacity to create and understand speech. That capacity has often been cited as a defining characteristic of our species, and one that sets us apart in the long history of life on Earth. Yet we know that other species communicate in complex ways. Studies of the neurological foundations of language suggest that birdsong, or communication among bats or elephants, originates with brain structures similar to our own. So why do some species vocalize while others don’t?Â
In this episode, Erich Jarvis, who studies behavior and neurogenetics at the Rockefeller University, chats with Janna Levin about the surprising connections between human speech, birdsong and dance.
Scientists routinely build quantitative models — of, say, the weather or an epidemic — and then use them to make predictions, which they can then test against the real thing. This work can reveal how well we understand complex phenomena, and also dictate where research should go next. In recent years, the remarkable successes of “black box” systems such as large language models suggest that it is sometimes possible to make successful predictions without knowing how something works at all.Â
In this episode, noted statistician Emmanuel Candès and host Steven Strogatz discuss using statistics, data science and AI in the study of everything from college admissions to election forecasting to drug discovery.Â
The “species” category is almost certainly the best known of all the taxonomic classifications that biologists use to organize life’s vast diversity. It’s a linchpin of both conservation policy and evolutionary theory, though in practice biologists have struggled to find a definition that works across the natural world.Â
In this episode, Kevin de Queiroz, a zoologist and evolutionary biologist, talks with host Janna Levin about the variety of ways to conceive of a species, and ways to understand the relationships among living things.
When we think about medicine’s war on cancer, treatments such as surgery, radiation and chemotherapy spring to mind first. Now there is another potential weapon for defeating tumors: statistics and mathematical models that can optimize the selection, combination or timing of treatment. Building and feeding these models requires accounting for the complexity of the body, and recognizing that cancer cells are constantly evolving.Â
In this episode, host Steven Strogatz hears from Franziska Michor, a computational biologist, about how our understanding of evolutionary dynamics is being used to devise new anticancer therapies.
If instruments do someday detect evidence of life beyond Earth, whether it’s in this solar system or in the farther reaches of space, astrobiologists want to be ready. One of the best ways to learn how alien life might function can be to study the organisms called extremophiles, which live in incredibly challenging environments on or in the Earth.Â
In this episode, Penelope Boston, a microbiologist who has worked for many years with NASA, speaks with Janna Levin about the bizarre life found in habitats such as caves, how it would be possible to detect life beyond our solar system and what it would mean for humanity if we do.Â
As a treat to our listeners, we are posting a full episode of Sidedoor, a podcast that explores the treasures in the Smithsonian's vaults. Subscribe to Sidedoor from Smithsonian wherever you listen to podcasts!
Black holes could unlock the mysteries of creation and live at the heart of nearly every galaxy. But these invisible balls of extremely dense matter have never been fully understood, especially when they were only a theory. We travel through a cosmic wormhole back to the 1930s to learn how the first astrophysicist to successfully theorize a black hole, Subrahmanyan Chandrasekhar, was ridiculed and rejected by his scientific community.
The principles of thermodynamics are cornerstones of our understanding of physics. But they were discovered in the era of steam-driven technology, long before anyone dreamed of quantum mechanics.Â
In this episode, theoretical physicist Nicole Yunger Halpern talks to host Steven Strogatz about how physicists today are reinterpreting concepts such as work, energy and information for a quantum world.
Observations of the cosmos suggest that unseen sources of gravity — dark matter — tug at the stars in galaxies, while another mysterious force — dark energy — drives the universe to expand at an ever-increasing rate. The evidence for both of them, however, hinges on assumptions that gravity works the same way at all scales. What if that’s not true?Â
In this episode, theoretical physicist Claudia de Rham explains her work on an alternative explanation called “massive gravity” to host Janna Levin.
Within just a few years, artificial intelligence systems that sometimes seem to display almost human characteristics have gone from science fiction to apps on your phone. But there’s another AI-influenced frontier that is developing rapidly and remains untamed: robotics. Can the technologies that have helped computers get smarter now bring similar improvements to the robots that will work alongside us?Â
In this episode, Daniela Rus, a pioneering roboticist at the Massachusetts Institute of Technology, talks to host Steven Strogatz about the surprising inspirations from biology that may help robots rise to new levels.
Your feedback is valuable to us. Should you encounter any bugs, glitches, lack of functionality or other problems, please email us on [email protected] or join Moon.FM Telegram Group where you can talk directly to the dev team who are happy to answer any queries.