Das Universum ist voll mit Sternen, Galaxien, Planeten und jeder Menge anderer cooler Dinge. Jedes davon hat seine Geschichten und die Sternengeschichten erzählen sie.
Sternengeschichten Folge 690: Das Leben von Jürgen Stock, oder: Wie die Astronomie nach Chile gekommen ist
Gut ein Drittel der globalen astronomischen Kapazität befindet sich in Chile. Das war zumindest im Jahr 2020 so. Mit den Teleskopen, die dort seit damals gebaut und geplant wurden, wird dieser Anteil um 2030 herum auf über 50 Prozent gestiegen sein. Das Land in Südamerika ist ohne Zweifel das astronomische Zentrum der Welt; zumindest wenn es um die Teleskope und die beobachtende Astronomie geht. Aber warum eigentlich? Warum stehen all die großen Observatorien genau dort? Das hat viele Gründe, aber einer davon ist auf jeden Fall die Arbeit des deutschen Astronoms Jürgen Stock.
Er wurde am 8. Juli 1923 in Hamburg geboren. Dass er irgendwann eine astronomische Karriere einschlagen würde, war damals natürlich noch unklar, aber seine Verbindung zu Süd- und Mittelamerika began schon in seiner Kindheit. Stocks Vater hatte ein Importgeschäft und die ganze Familie, inklusive dem dreijährigen Jürgen ist deswegen 1925 nach Mexiko gezogen. Als sechsjähriger ist Jürgen Stock nach Deutschland zurück gekehrt, um dort in die Schule zu gehen. Dort hat er sich durchaus schon für Naturwissenschaft interessiert, aber nach dem Abitur wurde er direkt vom Militär eingezogen und musste das letzte Jahr des zweiten Weltkriegs an der Ostfront in Russland verbringen. Als das endlich vorbei war, ging er von dort zu Fuß zurück nach Hamburg, schrieb sich an der Universität ein und arbeitete nebenbei im Hafen als Hilfsarbeiter. Sein Astronomie-Studium hat Stock im Jahr 1951 abgeschlossen, mit einer Doktorarbeit über Photometrie von Sternhaufen, betreut von Otto Heckmann, der in dieser Geschichte später noch eine wichtige Rolle spielen wird.
Keine so große Rolle in dieser Geschichte wird übrigens Stocks eigentliche Forschungsarbeit spielen. Die hat er als Astronom natürlich gemacht; er hat sich mit Sternhaufen beschäftigt, mit hellen Sternen in den magellanschen Wolken, und so weiter. Aber das war nicht das, mit dem er die Welt der Astronomie so nachhaltig beeinflusst hat. Aber dass er das tun würde, hat Jürgen Stock damals selbst auch noch nicht gewusst. Im Nachkriegsdeutschland hat es kaum Stellen für einen jungen Astronom wie Stock gegeben, also er hat 1953 eine Position der Cleveland Astronomical Society in den USA angenommen. Die war allerdings nur für 2 Jahre befristet, nach denen er wieder zurück nach Hamburg ging. Sein Doktorvater, Otto Heckmann, hat ihn dann 1956 nach Südafrika geschickt, um dort als Direktor der Boyden-Sternwarte zu arbeiten. Die wurde schon 1889 von der Harvard Universität gegründet; ursprünglich in Peru, aber dann 1927 nach Südafrika verlegt, weil man dachte, dass das Wetter dort besser ist. So war es auch, aber in den 1950er Jahren gab es Probleme mit der Finanzierung. Ein paar europäische Länder, darunter Deutschland, sind eingesprungen und so ist Jürgen Stock nach Südafrika gekommen. Und ich erzähle das alles deswegen so ausführlich, weil es tatsächlich wichtig ist, wenn wir verstehen wollen, wie die Astronomie nach Chile gekommen ist.
Ungefähr zu dieser Zeit, im Januar 1954, haben sich Astronomen aus Belgien, Frankreich, West-Deutschland, den Niederlanden, Großbritannien und Schweden getroffen. Sie wollten ein gemeinsame, europäische Sternwarte gründen und zwar auf der Südhalbkugel der Erde. Damals haben sich die meisten Observatorien immer noch auf der nördlichen Hälfte der Erde befunden, wo es zwar viel zu sehen gibt. Aber sehr viel eben auch nicht. Das Zentrum der Milchstraße kann man zum Beispiel nur von der Südhalbkugel aus ordentlich beobachten; ebenso die beiden Satellitengalaxien der Milchtstraße, die magellanschen Wolken. Und so weiter: Im Wesentlichen der halbe Himmel war für die großen Sternwarten nicht zugänglich. Natürlich gab es auch früher schon Teleskope im Süden und die standen vor allem in Südafrika. Schon 1820 hat die Royal Astronomical Society eine Sternwarte am Kap der guten Hoffnung eingerichtet; damals ja noch Teil einer britischen Kolonie. In der Umgebung der großen Städte Südafrikas gab es in den 1950er Jahren auch diverse andere Sternwarten - unter anderem das Boyden-Observatorium in Bloemfontein, wo Stock 1956 seine Arbeit begonnen hat. Es ist also nahe gelegen, dass sich die europäischen Ländern zuerst in Südafrika auf die Suche nach einem guten Platz für ihre gemeinsame Südsternwarte gemacht haben.
Jetzt aber wieder zurück zu Stock: 1958 wurde eine Stelle in Cleveland frei und er ging wieder dorthin zurück. Dort war er vor allem mit Unterrichten beschäftigt. Jürgen Stock muss ein guter Lehrer gewesen sein, denn die Studierenden haben protestiert, als er 1959 aus Cleveland weggeschickt wurde. Nicht, weil er schlechte Arbeit gemacht hat - im Gegenteil. Das Yerkes-Observatorium der Universität Chicago ist damals zu ein wenig Geld gekommen und wollte ein neues Teleskop bauen; auch auf der Südhalbkugel aber nicht in Südafrika, sondern in Chile. Gerard Kuiper, der Direktor von Yerkes, wusste, dass es da in Cleveland einen wirklich sorgfältigen Astronom gibt, der sich gut mit Teleskopen und Sternwarten auskennt und vor allem auch gut damit auskennt, wie man Helligkeiten misst und astronomische Fotografien macht. Oder anders gesagt: Er wusste, das Jürgen Stock ideal geeignet ist, um einen passenden Platz für die neue Sternwarte in Chile zu finden. Also hat er ihn genau damit beauftragt und 1959 hat Stock sich auf den Weg nach Chile gemacht.
Dass Chile prinzipiell ein guter Platz für astronomische Beobachtungen sein könnte, vorher schon klar. Man braucht klar, trockende Luft, stabiles Wetter und kein störendes Licht. Und genau das hat man in Chile. An der Pazifikküste im Westen fließt der Humboldstrom, eine Meeresströmung mit kaltem Wasser aus der Antarktis. Kaltes Wasser verdunstet nicht so schnell, deswegen gibt es weniger Wasserdampf und damit weniger Regen. Östlich von Chile befinden sich der Amazonas, der eigentlich recht feucht ist und nicht umsonst als "Regenwald" bezeichnet wird. Aber zwischen Amazonas und Chile befinden sich die Anden. Diese 9000 Kilometer lange und bis zu fast 7000 Meter hohe Gebirgskette ist quasi eine riesige Mauer, die den Regen aus dem Osten abhält. Von Westen, also vom Pazifik, kommt wegen des kalten Humboldstroms sowieso schon weniger Regen und dann gibt es auch noch das Cordillera de la Costa, also ein Küstengebirge, dass zusätzlich Regen von Westen abhält. Anders gesagt: Chile liegt zu einem großen Teil zwischen zwei Gebirgsketten, die keine Feuchtigkeit durchlassen und deswegen existiert dort die Atacama-Wüste, die nicht nur enorm trocken ist, sondern auch hochgelegen ist und viele Berge hat. Dort oben ist die Luft dünn, trocken und klar und rundherum gibt es wenig, was störendes Licht produziert.
Jürgen Stock ist also nach Chile gegangen, ins Umland der Hauptstadt Santiago. Dort sollte er drei potentielle Standorte untersuchen. Was er auch getan und sofort festgestellt hat: So toll sind die nicht. Also ist er ein Stückchen nach Norden gegangen, in den Region um die Stadt Vicuña um dort zu testen. Dort hat Jürgen Stock dann im April 1960 den Cerro Tololo gesehen und war sofort begeistert. Ein Berg, über 2000 Meter hoch, fast isoliert in der Landschaft, mit einem flachen Gipfel und ohne störende Zivilisation rundherum. Das müsste super sein für die Astronomie, aber ob es auch wirklich super ist, muss man erst messen. Und das ist nicht so einfach, wie man denken würde. Da kann man nicht einfach kurz mal nachschauen gehen - sondern muss über viele Nächte hinweg genaue Beobachtungen anstellen; Wetterdaten sammeln, Fotografien der Sterne machen, und so weiter. Und das alles in einer Gegend, in der es keine Straßen gibt oder sonst irgendeine Art von sinnvoller Infrastruktur.
Also hat Stock sich Maulesel besorgt und hat sich auf den langen und mühsamen Weg zum Gipfel gemacht. Und war beeindruckt, oder, in seinen eigenen Worten: „Die erste Nacht war so beeindruckend: eine vollkommen klare Nacht, absolut ruhig, mit einer angenehmen Temperatur – besser hätte es nicht sein können. Und außerdem war es in alle Richtungen vollkommen dunkel.“
Aber eine einzige tolle Nacht reicht natürlich nicht. Stock hat noch mehr und längere Messungen gemacht; Ausflüge und Messungen auf den Bergen in der Umgebung, und so weiter. Dabei war er auch nicht alleine, sondern hat sich vor allem von der lokalen Bevölkerung Rat und Unterstützung geholt. Denn wer weiß besser Bescheid, wie man in der unwirtlichen Gegend vorwärts kommt, als die Menschen, die dort leben? Wer weiß besser, wie das Wetter sich langfristig verhält, als die, die schon immer damit zu tun haben? Auf jeden Fall hat sich der erste Eindruck schnell bestätigt. Der Cerro Tololo war perfekt für die Beobachtung des Nachthimmels und aus einem weitestgehend unbekannten Berg in der chilenischen Wüste ist heute ein Ort geworden, den alle in der Astronomie kennen. Die Universität Chicago war so beeindruckt von Stocks Bericht, dass sie ihre ursprünglichen Pläne verworfen und gleich ein viel größeres Observatorium geplant haben. 1963 begann der Bau des Cerro Tololo Inter-American Observatory und Jürgen Stock war der erste Direktor und damit auch für den Bau verantwortlich. Aber mittlerweile hat er sich ja auch gut in der Gegend ausgekannt…
In der ganzen Zeit hat Stock aber auch immer Kontakt zu seinem Doktorvater Otto Heckmann gehalten. Der war mittlerweile Direktor der ESO, des European Southern Observatory beziehungsweise der Europäischen Südsternwarte. So hat man das Projekt der europäischen Staaten, die eine Sternwarte in Südafrika bauen wollte, nun genannt und Heckmann war schon kurz davor, die entsprechenden Verträge abzuschließen. Aber einerseits war Südafrika mit seiner Apartheidspolitik kein so verlockender Ort mehr wie früher. Und andererseits war Heckmann sehr beeindruckt von den Berichten die Stock aus Chile geschickt hat. Und 1963 hat sich die ESO dann deswegen entschieden, ihre Sternwarte ebenfalls in Chile zu errichten. Man hat zuerst überlegt, ob man das auch auf dem Cerro Tololo tun sollte, ist dann aber mit den amerikanischen Sternwarten übereingekommen, sich einen anderen Berg zu suchen. Den hat man auch gefunden, und zwar den Cerro La Silla.
Die La-Silla-Sternwarte. Das Paranal-Observatorium. Das Extremly Large Telescope auf dem Cerro Armazones. Das Gemini-Observatorium auf dem Cerro Pachón. Das Las Campanas Observatorium. Und so weiter. Chile ist heute voll mit den weltbesten Teleskopen und das Zentrum der beobachtenden Astronomie. Jürgen Stock hat zwar keine revolutionäre Entdeckung durch seine Erforschung von Sternhaufen und Sternen gemacht. Aber er hat die Astronomie dennoch bis heute nachhaltig verändert. Seine persönliche Geschichte war aber damit noch lange nicht zu Ende. Wie so oft in größeren Organisationen kam es zu einem Streit; Stock und das Konsortium amerikanischer Sternwarten, das mittlerweile für das Cerro Tololo Inter-American Observatory verantwortlich war, haben sich verkracht und er ging an die Universidad de Chile in Santiago, um dort zu lehren. Mittlerweile war er auch amerikanischer Staatsbürger, was im September 1970 zu einem Problem wurde. Da wurde nämlich Salvador Allende zum chilenischen Präsidenten gewählt und hat verboten, dass Ausländer an chilenischen Universitäten arbeiten. Jürgen Stock ging also nach Mexiko um dort beim Aufbau von Sternwarten mitzuarbeiten, und 1971 bekam er eine Nachricht aus Venezuela. Auch dort wollte man eine große Sternwarte in den Anden bauen und Stock sollte den Bau und später das Observatorium leiten. Was er auch gemacht hat: 1973 wurde das Centro de Investigaciones de Astronomía in der Nähe von Mérida unter seiner Leitung eröffnet. Dort starb er auch am 19. April 2004. Er hat die Astronomie in Südamerika maßgeblich beeinflusst und zum Teil wortwörtlich mit aufgebaut. Und er hat dafür gesorgt, dass die weltbesten Teleskope heute unter den bestmöglichen Bedingungen in Chile arbeiten können. Jürgen Stock ist bei weitem nicht so bekannt, wie es Johannes Kepler, Galileo Galilei, Edwin Hubble und so weiter sind. Aber auf seine Art hat er die Astronomie mindestens genau stark beeinflusst.
STERNENGESCHICHTEN LIVE TOUR in D und Ö: Tickets unter https://sternengeschichten.live
Sternengeschichten Spezial! Diese Episode ist ein Versuch. Ich möchte ab jetzt monatlich eine längere Spezialfolge veröffentlichen, mit Hintergründen zum Podcast und meiner anderen Arbeit, mit aktuellen Themen aus der Astronomie und Raumfahrt und mit Feedback aus der Hörerschaft. Diese erste Spezialfolge ist noch ein wenig anders, weil ich noch kein Feedback habe, auf das ich eingehen kann. Und weil ich erst einmal das Konzept erklären möchte. Das heißt, in dieser ersten Folge geht es vor allem um die Hintergründe der "Sternengeschichten": Warum sind sie so wie sie sind und was macht die Spezialfolgen anders? Warum kann es in den "Sternengeschichten" keine Werbung geben und wie finanziert sich dieser Podcast (nicht). Aber ich hab mir auch ein aktuelles Thema ausgesucht, das ich kurz behandle, nämlich die Artemis-II-Mission, bei der Menschen erstmals seit 1972 wieder zum Mond fliegen sollen und deren Start nun von Februar auf März verschoben worden ist.
Mehr zu Artemis II und der Verschiebung des Starts findet man unter zum Beispiel hier oder hier.
STERNENGESCHICHTEN LIVE TOUR in D und Ö: Tickets unter https://sternengeschichten.live Der nächste Auftritt wird am 20. Februar 2026 in Wörgl stattfinden und Karten gibt es hier.
Mein neues Buch heißt “Die Farben des Universums” und ist ab jetzt überall erhältlich wo es Bücher gibt.
Meine anderen Podcast sind "Das Universum" und "Das Klima".
Feedback zu den Spezialfolgen bitte unter [email protected]
Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal (https://www.paypal.me/florianfreistetter)), Patreon (https://www.patreon.com/sternengeschichten)) oder Steady (https://steadyhq.com/sternengeschichten))
Sternengeschichten-Hörbuch: https://www.penguin.de/buecher/florian-freistetter-sternengeschichten/hoerbuch-mp3-cd/9783844553062
Sternengeschichten Folge 689: Die interstellare Auslöschung
In dieser Folge geht es um die interstellare Auslöschung. Das klingt extrem dramatisch, aber keine Sorge. Ich rede heute nicht über irgendeinen Weltuntergang. Das, was ausgelöscht wird, sind keine Planeten oder Zivilisationen. Es geht um Licht, das ausgelöscht wird und damit es nicht so extrem klingt, werde ich auch den Fachbegriff verwenden, mit dem man dieses Phänomen in der Astronomie bezeichnet - nämlich "Extinktion" - was aber auf Latein trotzdem nichts anderes bedeutet als "Auslöschung".
Wenn wir uns den Weltraum vorstellen, dann stellen wir uns meistens Nichts vor. Oder besser gesagt: Wir stellen uns schon etwas vor, aber halt einen großen, leeren Raum. Und das ist ja auch keine falsche Vorstellung. Wäre das Weltall nicht weitestgehend leer, dann könnten wir keine Sterne sehen. Das tun wir aber und wir wissen, dass sie enorm weit entfernt sind. Wenn da irgendwas zwischen uns und den Sternen ist, könnten wir sie nicht sehen. Daraus folgt: Der Raum zwischen den Sternen ist ziemlich leer, denn ansonsten würde es ihr Licht nicht bis zu uns schaffen.
Dass das aber im Detail nicht ganz richtig ist, ist den Leuten schon vergleichsweise früh klar geworden. Im Jahr 1847 hat der deutsche Astronom Friedrich Georg Wilhelm Struve ein Buch mit dem Titel „Études d’astronomie stellaire: Sur la voie lactée et sur la distance des étoiles fixes“ geschrieben. Das heißt so viel wie "Studien zur stellaren Astronomie: Über die Milchstraße und über die Entfernung der Fixsterne". Struve hat sich darin jede Menge Gedanken gemacht, unter anderem aber auch über das Olberssche Paradoxon, von dem ich in Folge 258 der Sternengeschichten ausführlich erzählt habe. Kurz zusammengefasst: Der deutsche Astronom Heinrich Wilhelm Olbers hat sich 1832 gefragt, warum es Nachts dunkel ist. Denn, so sein Gedanke, wenn das Weltall unendlich groß und unendlich alt ist und voll mit Sternen, sollten wir immer auf einen Stern blicken, egal wohin wir schauen. Oder anders gesagt: Von jedem Punkt des Himmels müsste Sternenlicht zu uns gelangen und der Himmel müsste Nachts taghell erscheinen. Heute wissen wir, warum der Gedanke falsch ist: Erstens leben Sterne nicht ewig und auch das Universum ist nicht unendlich alt. Olbers hat sein Paradoxon damals anders erklärt: Er hat gemeint, dass der Weltraum nicht komplett leer ist; er ist nicht durchsichtig und das Licht der fernen Sterne kommt nicht zu uns durch. Damit lag er nicht völlig falsch, aber definitiv auch nicht richtig. Denn was auch immer da zwischen uns und den Sternen ist - es hätte sich im Laufe der Zeit durch ihr Licht so weit aufheizen müssen, um selbst zu leuchten zu beginnen.
Struve jedenfalls wollte sich die Sache genauer ansehen. "Wir sehen zu wenig Sterne, drum ist da was, was das Licht blockiert" war ihm als Beleg zu wenig. Also hat er selbst Daten gesammelt. Er Sterne beobachtet und gezählt und ihre Helligkeit gemessen. Und auch andere Daten berücksichtigt. Und dann so argumentiert: Wenn der Raum wirklich transparent ist und die Sterne im Weltraum nicht irgendwie völlig komisch verteilt sind, dann müssten wir um so mehr Sterne sehen können, je weiter wir blicken. Aber so war es nicht, das haben seine Daten gezeigt. Er hat also geschlossen, dass es da eine "extinction de la lumière dans l’espace" gibt, also eine "Auslöschung des Lichts im Weltraum". Wie das zustande kommt und was es ist, dass da Licht auslöscht, konnte er aber auch nicht genau sagen. Und der Vollständigkeit halber: Heute wissen wir, dass auch eine andere wichtige Voraussetzung von Struves Gedankengang falsch ist: Die Sterne sind tatsächlich "komisch" verteilt. Nämlich nicht gleichmäßig im Universum. Sie sind in Galaxien versammelt und zwischen den Galaxien ist sehr, sehr viel nichts. Das wusste Struve damals noch nicht; das wissen wir erst seit dem frühen 20. Jahrhundert. Aber Struve hat sich ja sowieso nur auf die für ihn beobachtbaren Sterne konzentriert, die alle Sterne innerhalb der Milchstraße sind. Und wenn es keine Auslöschung des Lichts geben würde, hätte er tatsächlich mehr weit entfernte Sterne sehen müssen, als er es tatsächlich getan hat.
Aber das war alles immer noch ein wenig vage. Der erste, der wirklich zweifelsfrei und wissenschaftlich wasserdicht Licht in die Angelegenheit gebracht hat, war der aus der Schweiz stammende amerikanische Astronom Robert Julius Trumpler. Im Jahr 1930 hat er eine Arbeit veröffentlicht, die sich mit der Beobachtung von Sternhaufen in der Milchstraße beschäftigt. Er hat die Entfernung dieser Ansammlungen von Sternen untersucht, ihre Größe und ihre Verteilung in der Milchstraße. Für die Entfernungsmessung hat er die sogenannte "spektroskopische Parallaxe" verwendet. Ohne auf die Details einzugehen: Dabei untersucht man das Licht der Sterne, um daraus ihre Temperaturen abschätzen zu können, aus der sich ihre wahren Helligkeiten ergiben. Die kann man dann mit der von der Erde aus sichtbaren scheinbaren Helligkeit vergleichen und daraus die Entfernung bestimmen. Außerdem hat Trumpler auch gemessen, wie groß der Durchmesser ist, unter dem ein Sternhaufen von der Erde aus gesehen am Himmel erscheint. Kennt man die Entfernung, dann folgt daraus direkt, wie groß er tatsächlich sein muss. Wenn es um den scheinbaren Durchmesser geht, dann ist der natürlich um so kleiner, je weiter so ein Haufen weg ist. Für den wahren Durchmesser kann das aber nicht gelten. Ein Sternhaufen ist so groß, wie groß er eben ist - egal ob er uns nahe ist oder nicht. Und dann gibt es ja auch noch physikalische Grenzen, die bestimmen, wie groß so ein Haufen überhaupt werden kann. Trumpler hat jetzt aber etwas interessantes beobachtet: Es gab einen Zusammenhang zwischen der Entfernung und der wahren Größe. Je weiter entfernt ein Sternhaufen von der Erde ist, desto größer war sein wahrer Durchmesser.
Das kann natürlich in echt nicht so sein. Aber was war es dann? Wenn es zwischen uns und den Sternhaufen etwas gibt, so Trumpler, dass das Licht abschwächt, dann sehen wir die Sterne schwächer leuchten, wenn sie weiter weg sind. Dadurch schätzen wir ihre Helligkeit und Temperatur falsch ein und überschätzen ihre Entfernung. Damit überschätzen wir auch gleichzeitig ihren wahren Durchmesser. Trumpler schreibt das auch genau so in seiner Arbeit: "Wenn der interstellare Raum nicht vollständig transparent ist, gilt dieses Gesetz nicht; die scheinbare Helligkeit nimmt dann schneller ab, unsere berechneten Entfernungen sind zu groß, und der Fehler wächst mit der Entfernung des Sternhaufens." Und ihm ist auch noch etwas anderes aufgefallen. Aus der Temperarur des Sterns folgt auch in etwa, welche Farbe das Licht haben muss, das er aussendet. Kühle Sterne sind rötlicher, heiße Sterne sind eher bläulich und dazwischen leuchten die Sterne gelb, weißlich oder orange. Seine Beobachtungen haben aber gezeigt, dass die Farbe der Sterne immer ein wenig rötlicher ist, als erwartet. Das muss aber bedeuten, dass blaues Licht stärker abgeschwächt wird als rotes Licht und DAS bedeutet, dass der Effekt der Auslöschung von der Wellenlänge des Lichts abhängt. Und, so wie bei der Überschätzung der Durchmesser, nimmt auch dieser Effekt mit der Entfernung zu.
Das, was dafür sorgt, dass man Durchmesser und Farbe der Sterne falsch einschätzt, muss also wirklich überall im Weltraum sein. Wenn es zum Beispiel nur irgendwelche Gaswolken innerhalb der Sternhaufen wären, die das Licht abschwächen, dann gäbe es nicht den Zusammenhang mit der Entfernung. Und das, was das Licht abschwächt, schwächt dieses Licht unterschiedlich stark ab, je nachdem welche Wellenlänge es hat. Das sind alles ziemlich starke Hinweise, dass es sich dabei um kleinste Partikel handelt, wenige Bruchteile von Mikrometern groß. Um das, was wir "Staub" nennen würden - aber in Trumplers Arbeit taucht dieses Wort noch nicht auf. Dafür aber in der ein Jahr später, 1931, erschienenen Arbeit "Über die physikalische Interpretation des Farbexzesses bei Sternen frühen Spektraltyps" von Ernst Öpik. Darin wollte der estnische Astronom klären, was es denn jetzt ist, dass die mittlerweile mehr als gut belegte Auslöschung des Sternenlichts und die Veränderung der Farbe verursacht. Er hat dafür folgende Hypothesen herangezogen: Irgendeine Art von Streuung des Lichts in Erweiterung der Atmosphäre der Sterne selbst. Sterne könnten eine Art von Hülle besitzen, die das Licht beim Durchgang entsprechend verändert. Oder aber die Atmosphäre der Sterne verhält sich anders, als bisher gedacht und schwächt das Licht auf eine unterwartete Weise ab. Oder es gibt große Wolken aus Staub im Weltraum. Nachdem er alle untersucht hat, kommt er zu dem Schluss: "Von diesen Hypothesen erscheint die erste als die wahrscheinlichste, da sie zugleich die einfachste ist und am besten im Rahmen unseres derzeitigen physikalischen Wissens kontrollierbar bleibt." Und sagt weiter: "Der Staub […] könnte ein dauerhafter Bestandteil des galaktischen Systems sein und nicht nur ein vorübergehendes Element, das letztlich durch Strahlungsdruck hinausgetrieben wird."
Damit war der Begriff "Staub" in diesem Zusammenhang etabliert und es war nicht einfach nur Staub, sondern "interstellarer Staub". Wir wissen heute, dass er tatsächlich überall zwischen den Sternen existiert und dass er von den Sternen selbst produziert wird. In seinen letzten Lebensphasen herrschen in einem Stern Bedingungen, unter denen sich all die Atome, die er durch Kernfusion erzeugt hat, miteinander zu komplexen Molekülen verbinden können. Die werden dann ins All hinausgeschleudert und Teil der interstellaren Materie, von der ich in Folge 79 erzählt habe. Dort können sie weiter chemisch reagieren und noch weiter wachsen. Die Teilchen werden durch die Strahlung von Sternen auch wieder zerstört; es gibt einen regelrechten Staubkreislauf. Aber der wichtige Punkt ist: Es gibt jede Menge Staub im All und auch wenn wir den nicht direkt sehen können, schwächt er das Licht der Sterne ab. Je weiter wir hinaus blicken, desto mehr Staub befindet sich auch entlang des Weges, den das Licht bis zu uns zurücklegen muss und desto stärker ist der Effekt. DAS ist die interstellare Extinktion und sie muss immer berücksichtigt werden, wenn man entsprechende Beobachtungen anstellt. Nur wenn die Daten entsprechend korrigiert sind, kann man sie auch richtig interpretieren. Auch in der Astronomie muss also alles regelmäßig entstaubt werden…
Sternengeschichten Folge 688: Keplers Supernova
"Also hat sich auch in jetz ablauffendem 1604. Jahr den 9 oder 10 Octobris abermahl ein sehr grosser heller zwintzerender stern in der constellatione Serpentarij erstmahlen entzündet vnd ist den 17. 18. 21. 28. Octobris observando so viel befunden worden das er kheinen lauff nit habe ausserhalb des täglichen Auff vnd Nidergangs."
Das schreibt, im ungewohnten Deutsch des frühen 17. Jahrhunderts, der berühmte Astronom Johannes Kepler in seinem Text "Gründtlicher Bericht Von einem ungewohnlichen Newen Stern, wellicher im October ditz 1604. Jahrs erstmahlen erschienen". Kepler hat diesen "neuen Stern" erstmals am 17. Oktober beobachtet und kurz danach den Text verfasst, aus dem ich zu Beginn zitiert habe. Es war aber nicht Kepler, der das Phänonem entdeckt hat. Vermutlich war es der italienische Astronom und Franziskanermönch Illario Altobelli, der am 9. Oktober 1604 als erster bemerkt hat, dass am Himmel plötzlich ein neuer Stern aufgetaucht ist; im Sternbild des Schlangenträgers. Am 10. Oktober wurde auch andere darauf aufmerksam, darunter auch der deutsche Astronom Simon Marius. Es waren aber nicht nur die Menschen in Europa, die den neuen Stern am Himmel bemerkt haben. Auch in China und Korea hat man zur selben Zeit die selben Beobachtungen gemacht.
Am Anfang war der neue Stern ungefähr so hell wie der Mars. Dann wurde dass Licht sogar noch heller; heller als der Jupiter, der immerhin nach Mond und Venus das hellste Objekt an unserem Nachthimmel ist. Aber im Gegensatz zu den Planeten hat sich der neue Stern nicht über den Himmel bewegt. Das ist es, was Kepler gemeint hat, als er geschrieben hat "das er kheinen lauff nit habe ausserhalb des täglichen Auff vnd Nidergangs." Der neue Stern geht auf und unter wie die anderen Sterne, aber darüber hinaus bewegt er sich nicht. Aber ab November ging das seltsame helle Objekt nicht mehr auf; erst im Januar 1605 war es wieder am Nachthimmel zu sehen und da immer noch so hell wie hellsten Sterne. Erst fast ein Jahr nach seinem Erscheinen, im Oktober 1605, war der neue Stern verblasst.
Sterne, die plötzlich am Himmel auftauchen und dann wieder verschwinden gehörten nicht zum damaligen Weltbild. Sie waren aber auch nicht völlig unbekannt. Im Jahr 1572 hatte man so etwas schon mal beobachtet und ich habe davon ein bisschen mehr in Folge 167 der Sternengeschichten erzählt. Es gab darüber damals schon große Diskussionen und die wurden jetzt wieder aufgenommen. Denn im 16. und auch im frühen 17. Jahrhundert ging man im wesentlichen immer noch davon aus, dass der Himmel sich so verhält wie es Aristoteles in der griechischen Antike behauptet hat. Vereinfacht gesagt: Die Erde ist die Erde, aber der Himmel ist völlig anders. Der Himmel ist perfekt und göttlich und weil er perfekt ist, verändert sich dort auch nichts. Und auch die Gesetze, nach denen sich die Objekte am Himmel bewegen sind andere, als die, die auf der Erde gelten. Ein neuer Stern, der am Himmel auftaucht, hat dieses Weltbild in Frage gestellt. Manche haben probiert, die Lage zu retten, in dem sie behauptet haben, diese seltsamen Lichter am Himmel hätten gar nichts mit Sternen zu tun. Sondern sind nur ein Art von Leuchterscheinung in der Atmosphäre der Erde oder vielleicht auch ein wenig darüber. Aber auf jeden Fall sind sie uns näher als der Mond, denn das war mehr oder weniger die Grenze, wo man sich damals den Beginn dieser perfekten, himmlischen Sphären gedacht hat.
Es gab da nur ein Problem: Wenn uns diese Lichter wirklich näher sind als der Mond, dann müsste man eine Parallaxe beobachten. Auch davon habe ich schon oft erzählt: Wenn man ein entferntes Objekt von zwei verschiedenen Orten und damit aus zwei verschiedenen Blickwinkeln beobachtet, dann sieht man es jeweils vor einem leicht verschobenen Hintergrund. In der Astronomie bedeutet das: Die Position des Objekts in Bezug auf die fernen Sternen verändert sich scheinbar, wenn man die Beobachtungsposition verändert. Dieser Effekt heißt Parallaxe und er ist um so größer, je näher das Objekt ist. Sowohl beim neuen Stern aus dem Jahr 1572 als auch beim neuen Stern, den Kepler 1604 beschrieben hat, war aber keine Parallaxe zu beobachten. Das bedeutet: Es muss sich um ein weit entferntes Objekt handeln, weiter entfernt als der Mond. Und damit war das Dogma des Unveränderlichen Himmels von Aristoteles in Frage gestellt. Das war auch die Schlussfolgerung, die Galileo Galilei aus seinen Beobachtungen im Jahr 1604 gezogen hat. Er ging aber sogar noch einen Schritt weiter. Seiner Meinung nach könnte es sich beim neuen Stern nicht um einen Stern handeln, sondern um eine große Menge an luftigem Material, das von der Erde aus aufgestiegen ist und jetzt von der Sonne beleuchtet wird. Und es ist nicht nur ein bisschen aufgestiegen, sondern weit über die Distanz des Mondes hinaus. Das klingt jetzt aus heutiger Sicht zwar komisch, aber auch nicht sonderlich schlimm. Aus damaliger Sicht war es das aber. Ludovico delle Colombe, ein Philosoph aus Florenz und einer der größten Gegner von Galileo Galilei hat sich darüber so richtig aufgeregt. Nicht nur habe Galilei behauptet, der unveränderliche göttliche Himmel können sich verändern, was ja schon schlimm genug wäre. Er hat noch dazu behauptet, dass diese Veränderung von der Erde ausgegangen ist. Oder anders gesagt: Die unreinen Elemente der Erde haben das himmlische Material des Äthers im Weltraum verunreinigt! Die irdische Welt und die des Himmels vermischen sich quasi und das war ein Gedanke, der vielen unvorstellbar war. Delle Colombe hatte aber auch keine wirklich gute Alternative um das Phänomen des neuen Sterns zu erklären. Er hat einfach behauptet, dass es sich gar nicht um einen neuen Stern handelt, sondern um einen der eh schon immer da war, nur eben nicht immer sichtbar.
Der Streit zwischen Galilei und der Kirche ging dann ja noch ein bisschen weiter, wie wir wissen - aber das ist wieder eine andere Geschichten. Johannes Kepler jedenfalls hat weitere Beobachtungen des neuen Sterns angestellt, andere Beobachtungen gesammelt und 1606 sein umfassendes Werk "De Stella Nova in Pede Serpentarii" beziehungsweise "Der Neue Stern im Fuß des Schlangenträgers" veröffentlicht. Und am Ende konnte er klar zeigen: Es gibt keine Parallaxe und das Objekt muss sich weit entfernt von uns befinden. Die genaue Natur konnte aber auch er nicht herausfinden.
Dafür haben wir über 300 Jahre warten müssen. In den folgenden Jahrhunderten hat man zwar immer besser gelernt, den Himmel zu beobachten, aber erst als wir in der ersten Hälfte des 20. Jahrhunderts auch verstanden haben, wie Sterne eigentlich funktionieren, konnte das Rätsel gelöst werden. Diese Entwicklung zu erzählen wäre wieder ein Thema für eine eigene Folge - aber wir wissen heute, dass der Himmel nicht unveränderlich ist. Sterne leben nicht ewig und wenn sie ihr Leben beenden, dann ist das sehr oft sehr dramatisch. Manche explodieren auf gewaltige Art und Weise und werden dabei für kurze Zeit extrem hell. Solche Ereignisse nennt man "Supernova" und genau so etwas haben Kepler und seine Kollegen im Jahr 1604 beobachtet. Es gibt verschiedene Arten, wie ein Stern explodieren kann und sie laufen alle auf unterschiedliche Weise ab. Aber weil Kepler damals so genaue Aufzeichnungen angefertigt hat, können wir heute damit sogar sagen, dass es im Jahr 1604 eine Supernova vom Typ Ia gewesen sein muss. Ganz kurz gesagt läuft das so: In einem Doppelsternsystem sind zwei Sterne einander sehr nahe. Der eine beendet sein Leben etwas früher als der andere; wenn er den Wasserstoff in seinem Kern durch Kernfusion verbraucht hat und andere atomare Reaktionen ablaufen, wird er heißer, bläht sich zu einem roten Riesen auf, stößt seine äußeren Schichten ab und endet als weißer Zwerg. Etwas später durchläuft der zweite Stern denselben Prozess, aber weil sie sich eben so nahe sind, kann das Material, dass er beim Aufblähen abstößt auf den weißen Zwerg fallen. Dort gibt es dann plötzlich wieder genug Brennstoff, die Kernfusion setzt erneut ein und das auf explosive Art und Weise. Der weiße Zwerg wird zerstört und leuchtet dabei extrem hell auf. Die Änderung der Helligkeit - das Aufleuchten und das Abklingen des Lichts - verläuft dabei auf ganz charakteristische Weise und die stimmt mit den Daten von Kepler überein.
Es war also kein neuer Stern, den man damals beobachtet hat. Kein Stern ist plötzlich aufgetaucht; im Gegenteil: Ein Stern ist für immer aus dem Universum verschwunden. Nur hat er das mit einem ordentlichen Lichteffekt gemacht und ist dabei so hell geworden, dass er trotz seiner großen Distanz sichtbar wurde. Denn wir wissen heute auch, wie weit entfernt sich das alles abgespielt hat. Keplers Daten haben da ein weiters Mal geholfen. Mit seinen Positionsaufzeichnungen und dem großen Teleskop der Mount Wilson Sternwarte in den USA konnte der deutsche Astronom Walter Baade im Jahr 1941 zeigen, dass sich dort, wo damals der Stern aufgetaucht ist, ein nebelartiges Gebilde befindet. Heute sehen wir das alles natürlich noch besser und können die bei der Supernova durchs Weltall geschleuderten Gasmassen im Detail beobachten. Wir wissen daher auch, dass der Stern in circa 20.000 Lichtjahren Entfernung explodiert ist.
Johannes Kepler hat die Supernova aus dem Jahr 1604 nicht entdeckt; er hat auch nicht verstanden, was da genau passiert. Das konnte er mit dem Wissen und den Mitteln der damaligen Zeit natürlich auch nicht. Aber er hat trotzdem alles so genau aufgezeichnet, dass wir später die Möglichkeit hatten, das Rätsel zu lösen. Deswegen ist auch durchaus gerechtfertig, dass diese Supernova heute nicht nur die offizielle Bezeichnung SN 1604 trägt, sondern auch als Keplers Supernova bezeichnet wird. Es wäre natürlich toll gewesen, wenn wir schon damals mit unseren Teleskopen genau dabei zusehen hätten können, wie da ein Stern in unserer eigenen Milchstraße explodiert. Aber das Teleskop ist erst 5 Jahre später, im Jahr 1609 erfunden worden. Wir haben im Laufe der Zeit Supernova-Explosionen überall im Universum gesehen. In der großen Magellanschen Wolke, der Andromedagalaxie und allen möglichen anderen weit entfernten Galaxien. Im Jahr 2004 hat man das 400jährige Jubiläum von Keplers Supernova gefeiert - und das hat man in der Astronomie durchaus, denn es war ein wirklich wichtiges Ereignis. Was man damals aber nicht feiern konnte war die Beobachtung einer weiteren Supernova in unserer eigenen Milchstraße. Wir wissen, was da passiert und wir haben die Mittel, alles genau zu beobachten. Wir könnten so enorm viel von einer Supernova in relativer Nähe lernen. Aber über die Jahrhunderte ist leider kein weiterer Stern explodiert. Vielleicht klappt es ja bis zum 500. Geburtstag im Jahr 2104.
Sternengeschichten Folge 687: Zwerggalaxien und ihre Probleme
In dieser Folge der Sternengeschichten schauen wir wieder weit hinaus ins Weltall. Auf jeden Fall über die Grenzen unserer Milchstraße hinaus. Es wird extragalaktisch, aber wir wollen auch nicht übertreiben und bleiben bei den kleinen Dingen, die sich im großen Raum jenseits der Milchstraße befinden: Den Zwerggalaxien.
Die sind, immer wieder mal, in verschiedenen Folgen der Sternengeschichten aufgetaucht, aber sie haben bis jetzt noch keine eigene Folge bekommen, und das ist nötig. Denn die Zwerggalaxien sind nicht nur sehr spannend, sondern auch Teil eines großen Problems, das wir mit dem Verständnis des gesamten Universums und seiner Entwicklung haben.
Aber bevor es problematisch wird, bleiben wir bei den Zwerggalaxien selbst. Eine Galaxie ist eine große Ansammlung von Sternen, ein paar hundert Milliarden oder sogar noch mehr, die durch ihre Gravitationskraft aneinander gebunden sind. Und Gas, Staub, dunkle Materie und so weiter ist da natürlich auch noch mit dabei. Die Milchstraße ist eine Galaxie, zu der auch die Sonne gehört. Die Andromedagalaxie ist unsere nächstgelegene Nachbargalaxie - und so weiter. Das Universum ist voll damit. Und eine Zwerggalaxie ist - wenig überraschend - eine kleine Galaxie. Es gibt keine exakte Definition, ab wann man einen Haufen Sterne als "Zwerggalaxie" bezeichnet. Wenn es sehr viele Sterne sind, dann ist es eine Galaxie. Wenn es sehr wenig Sterne sind, dann ist es ein Sternhaufen beziehungsweise ein Kugelsternhaufen. Und irgendwo dazwischen sind die Zwerggalaxien. Typischerweise haben Zwerggalaxien mindestens ein paar hunderttausend Sterne und höchstens ein paar Milliarden. Aber wie gesagt - klare Grenzen gibt es da nicht.
In Folge 243 der Sternengeschichten habe ich ausführlich über die große und die kleine Magellansche Wolke gesprochen; zwei Zwerggalaxien, die man sehr gut mit freiem Auge am Nachthimmel sehen kann, zumindest wenn man sich ausreichend weit im Süden befindet. Sie enthalten 15 Milliarden Sterne beziehungsweise circa 5 Milliarden Sterne und in beiden Fällen sind das ziemlich viele Sterne. Ok, es sind nicht die rund 200 Milliarden Sterne die sich in der Milchstraße befinden, aber jetzt auch nicht dramatisch viel weniger. Wir haben aber auch schon Zwerggalaxien gefunden wie Ursa Major III, in der wir nur 57 Sterne sehen konnten. Das sind zugegeben extrem wenig Sterne, aber in dem Fall wird das durch die große Menge an dunkler Materie ausgeglichen, die sich dort befindet. Aber Objekte wie Ursa Major III sind Extremfälle und eine eigene Folge der Sternengeschichten wert.
Bleiben wir bei den normalen Zwerggalaxien. So wie die großen Galaxien kann man sie auch anhand ihrer Form einteilen. Es gibt elliptische und sphäroidale Zwerggalaxien, die - wie der Name nahelegt - mehr oder weniger kugelförmige Ansammlungen sind. Es gibt die irregulären Zwerggalaxien, deren Form irgendwie ist und es gibt Zwergspiralgalaxien. Dort sind die Sterne in einer Scheibe mit Spiralarmen angeordnet, so wie es auch in der Milchstraße und vielen anderen großen Spiralgalaxien der Fall ist. Zwergspiralgalaxien sind aber deutlich seltener. Damit eine Galaxie Spiralearme ausbilden kann, braucht sie vor allem ausreichend viel Gas und die Sterne müssen sich ausreichend lange stabil um das Zentrum der Galaxie herum bewegen. Zwerggalaxien sind klein und haben wenig Masse. Dadurch ist auch die gravitative Bindung zwischen den Sternen schwach und sie bewegen sich langsam. Sie können deswegen durch ihre Bewegung auch nicht die gravitativen Störungen auf das Gas ausüben, so dass dort neue Sterne entstehen. Ich will jetzt gar nicht im Detail auf die Entstehung von Spiralarmen und die "Dichtewellentheorie" eingehen, die das erklärt. Aber sehr kurz gesagt: Spiralarme bilden sich dann, wenn die kombinierten gravitativen Störungen jeder Menge Sterne auf die richtige Weise auf das interstellare Gas einwirken, so dass dort an bestimmten Stellen neue Sterne entstehen. Die leuchten dann hell und weil sie eben nur an bestimmten Stellen entstehen und hell leuchten, sehen wir ein Muster und dieses Muster sind die Spiralarme. Zwerggalaxien haben im Allgemeinen zu wenig Sterne dafür, sie bewegen sich nicht auf die richtige Weise und haben zu wenig Masse, um das Gas, das man für die Sternentstehung braucht, festzuhalten.
Deswegen sind die allermeisten Zwerggalaxien einfach "Haufen" von Sternen; manche eher kugelförmig und manche komplett unförmig. Und unförmig sind sie vor allem dann, wenn sie mit einer großen Galaxien in Wechselwirkung treten. Auch davon habe ich schon oft erzählt, zum Beispiel als es um die Sternströme in Folge 177 ging. Eine große Galaxie kann eine kleine Zwerggalaxie durch ihre Gravitationskraft nicht nur anziehen, sondern auch verformen. Und am Ende dann verschlucken. Das passiert ständig denn die Zwerggalaxien sind normalerweise immer in der Nähe von großen Galaxien zu finden. Es gibt zwar auch welche, die isoliert und weitab von allen anderen Galaxien existieren. Aber normalerweise ist die Situation so wie bei unserer Milchstraße: Sie hält sich einen ganzen Haufen an Satellitengalaxien. Wir kennen ein paar Dutzend davon. Die uns nächstgelegene ist die Canis-Major-Zwerggalaxie in circa 25.000 Lichtjahren Entfernung. Die bekanntesten sind die vorhin angesprochenenen Magellanschen Wolken, von denen die große auch die größte Satellitengalaxie ist. Aber wir kennen eben auch noch jede Menge andere, die die Milchstraße wie eine Wolke umgeben. Auch die Andromedagalaxie hat ihre eigene Gruppe an Satellitengalaxien.
Und jetzt nähern wir uns langsam dem Problem, das ich zu Beginn der Folge angesprochen habe. Wir gehen heute davon aus, dass die Galaxien sich hierarchisch entwickelt haben. Das soll heißen: Zuerst sind kleine Strukturen entstanden und die haben sich langsam zu größeren entwickelt. Oder anders gesagt: Eine Galaxie wie die Milchstraße, die aus ein paar hundert Milliarden Sternen besteht, ist nicht auf einen Schlag entstanden. Zuerst waren da jede Menge kleinere Ansammlungen von Sternen, die sich gegenseitig mit ihrer Gravitationskraft beeinflusst haben. Manche davon sind miteinander verschmolzen und haben größere Ansammlungen gebildet. Die größten haben dann dominiert und noch mehr der kleineren verschluckt. Bis am Ende dann, vereinfacht gesagt, eine große Galaxie existiert, die von jeder Menge Zwerggalaxien umgeben ist, die noch nicht mit ihr verschmolzen sind sondern sich vorerst noch als "Satelliten" um die große Galaxie herum bewegen.
Mit unserem Wissen über die Vorgänge im frühen Universum, den theoretischen Modellen über die Entstehung und Entwicklung der Galaxien und so weiter, können wir das alles im Computer simulieren. Das ist alles andere als einfach. Man muss dazu zum Beispiel den Einfluss der dunklen Materie berücksichtigen, von der es ja sehr, sehr viel mehr gibt als von der normalen Materie. Die dunkle Materie hat im frühen Universum gigantische Wolke gebildet. Die Anziehungskraft dieser Wolken hat dafür gesorgt, dass die normale Materie sich in deren Zentren ansammelt. Dort sind daraus dann Galaxien entstanden - jede Galaxie liegt also im Zentrum einer noch viel größeren Wolke aus dunkler Materie. Diese Dunkle-Materie-Wolken stehen natürlich ebenfalls in Wechselwirkung miteinander und weil es eben so viel mehr dunkle Materie gibt als normale Materie, ist es genaugenommen diese Wechselwirkung, die relevant ist. Die Galaxien und Zwerggalaxien in den Zentren dieser Wolken sind nur so etwas wie leuchtende Markierungen für uns, anhand derer wir nachvollziehen können, wie die Struktur der Wolken aussehen muss.
All das muss man berücksichtigen, wenn man entsprechende Computermodelle haben will. Auf jeden Fall aber kann man solche Simulationen machen und sie stimmen eigentlich recht gut mit den realen Daten überein. Die großräumige Struktur, die sich in so einem Computeruniversum im Laufe der Jahrmilliarden entwickelt sieht mehr oder wenig so aus wie das, was wir auch in echt sehen, wenn wir die Verteilung der Galaxien im Universum kartieren. Wenn da nicht die Zwerggalaxien wären! Denn wir sehen zwar, dass jede große Galaxie einen Haufen Satellitengalaxien um sich herum hat. Aber wir sehen deutlich weniger als in den Simulationen. Das ist das Problem mit den Zwerggalaxien, das auch oft das "Missing Satellite Problem" genannt wird.
Wir wissen immer noch nicht genau, was die Ursache für das Zwerggalaxienproblem ist. Es kann natürlich sein, dass wir irgendwas grundlegendes nicht verstanden haben, was mit der Entwicklung des Universums zu tun hat. Vielleicht brauchen wir ein neues kosmologisches Modell; eine völlig neue Theorie über das Universum. Aber, und das ist vermutlich wahrscheinlicher, vielleicht haben wir auch nur ein paar Details noch nicht ganz verstanden. Wir sehen ja nur die Zwerggalaxien, in denen sich auch ausreichend viele Sterne befinden, die Licht aussenden. Es kann aber durchaus sein, dass in vielen Zwerggalaxien wenig oder vielleicht sogar gar keine Sterne gebildet worden sind. Ich habe vorhin gesagt, dass die großräumige Struktur durch die Verteilung der dunklen Materie bestimmt wird, die wir nicht direkt beobachten können. Wir sehen nur die normale Materie, die sich in den Zentren der großen Wolken aus dunkler Materie angesammelt und in Form von Sternen und Galaxien zu leuchten begonnen hat. Was aber, wenn sich in manchen Wolken aus dunkler Materie keine Sterne gebildet haben? Oder nur so wenig, dass wir es nicht beobachten können? Vielleicht müssen wir nicht unsere Theorien über das Universum über den Haufen werfen, sondern besser verstehen, wie die Wolken aus dunkler Materie die Entstehung von Galaxien beeinflussen?
Was aber auf jeden Fall außer Frage steht ist: Zwerggalaxien sind wichtig. Sie sind zahlreicher als die großen Galaxien. Sie sind quasi das, was bei der Entstehung der großen Galaxien übrig geblieben sind; sie sind eine Möglichkeit für uns, die Bildung der großen Strukturen im Universum zu verstehen. Und je besser wir darin werden, sie zu beobachten, desto besser werden wir auch verstehen, wie das Universum zu dem geworden ist, was wir heute sehen.
**Sternengeschichten Folge 686: Der asymptotische Riesenast **
In dieser Folge der Sternengeschichten geht es zum asymptotischen Riesenast! Das klingt natürlich seltsam: Was soll ein Ast mit dem Weltraum zu tun haben und warum ist es ein Riesenast? Und warum ist er asymptotisch? Das werden wir alles klären - aber es geht natürlich nicht um den Ast eines Baumes, sondern um das, was ein Stern wie unsere Sonne macht, kurz bevor er aufhört, ein Stern zu sein. Der asymptotische Riesenast beschreibt die letzten Schritte im Leben eines Sterns und da passieren jede Menge spektakuläre Dinge.
Aber bevor wir zum Ast kommen, müssen wir uns ein wenig mit dem Stern beschäftigen. Alles was ich im folgenden sage, gilt für Sterne, die nicht allzu viel mehr Masse haben als unsere Sonne. Es geht um Sterne, mit circa einer halben Sonnenmasse, bis hin zum circa 8-fachen der Sonnenmasse. Nur sie verhalten sich so, wie ich es jetzt gleich erklären werde. Ich habe in den vergangenen Folgen der Sternengeschichten schon oft davon erzählt, was ein Stern wie unsere Sonne gegen Ende seines Lebens tut. Aber für diese Folge müssen wir uns das sehr viel genauer ansehen als bisher. Ein Stern fusioniert Wasserstoff zu Helium und erzeugt dadurch Energie. Das passiert aber nur im Kern des Sterns, weiter außen reicht die Temperatur dafür nicht aus. Wenn im Kern kaum Wasserstoff mehr übrig ist, dann wird logischerweise auch weniger Fusion stattfinden und es wird weniger Energie erzeugt, die in Form vom Strahlung nach außen dringen kann. Diese Strahlung ist aber quasi die Gegenkraft, die verhindert, dass der Stern unter seiner eigenen Masse in sich zusammenfällt. Wenn der Strahlungsdruck also geringer wird, fällt der Stern - oder genauer gesagt: Der Kern, der jetzt fast nur noch aus Helium besteht - in sich zusammen. Deswegen steigt dort die Dichte und es steigt die Temperatur. Weil der Kern jetzt heißer ist als vorher, heizt er auch die weiter außen liegenden Gasschichten des Sterns auf. Und dort befindet sich ja noch jede Menge Wasserstoff; Wasserstoff, der auf einmal ausreichend stark aufgeheizt wird, um fusionieren zu können. Oder anders gesagt: Wir haben jetzt einen Stern mit einem Kern aus Helium, das vorerst nichts macht, und drum herum eine Hülle aus Wasserstoff, der heiß genug ist, um zu Helium fusioniert zu werden.
Und es ist nicht nur heiß genug, es ist sogar noch heißer als es vorher im alten Kern war. Denn der neue Heliumkern ist viel kompakter und dichter; seine Gravitationskraft ist sehr stark und deswegen ist der Druck in der darüberliegenden Schale aus Wasserstoff ebenfalls sehr hoch und hoher Druck bedeutet immer auch eine hohe Temperatur. Der Wasserstoff, der jetzt in der Schale um den Kern herum fusioniert, tut das also unter extremeren Bedingungen; es wird sehr viel mehr Energie frei als früher und die muss irgendwie nach außen. Der jetzt stärkere Strahlungsdruck bläht den Stern auf. Er wird größer und seine Oberfläche dadurch kühler (weil sich die Energie dort jetzt über eine größere Fläche verteilt als vorher). Das Resultat: Wir haben einen Stern, der einerseits - außen! - kühler ist als vorher und gleichzeitig heller leuchtet, weil er viel größer ist. Ein Stern wie unsere Sonne, der vorher weiß-gelbliches Licht abgegeben hat, leuchtet nun im kühleren Rot und wird riesig. Oder anders gesagt: Er wird zu einem Roten Riesenstern.
Ist der Wasserstoff in der Schale aufgebraucht und zu Helium geworden, dann ist einerseits der Heliumkern dadurch größer geworden, noch dichter und noch heißer und andererseits kann dadurch die nächst-äußere Wasserstoffschicht zu fusionieren beginnen. Der Stern bläht sich noch mehr auf - und so weiter. Aber natürlich nicht ewig und so weiter. Was am Ende dieser Entwicklung, passiert habe ich in Folge 576 sehr ausführlich erklärt. Irgendwann wird es jetzt auch im Heliumkern so heiß, dass endlich auch die Heliumatome miteinander fusionieren können. Das passiert quasi schlagartig, und deswegen nennt man das auch den "Helium-Blitz". Ob und wie so ein Blitz stattfindet hängt übrigens von der Masse des Sterns ab, aber das wichtige ist: Wir haben jetzt einen Stern, der quasi doppelt fusionieren kann: Helium im Kern und Wasserstoff in einer Schale außen herum. Das ganze läuft jetzt wieder ein wenig stabiler ab; der Stern dehnt sich nicht mehr dramatisch aus; seine Oberfläche wird wieder ein wenig heißer; seine Helligkeit wächst nicht mehr dramatisch an. Aber auch diese Phase dauert nicht ewig, denn irgendwann ist das Helium im Kern durch die Fusion aufgebraucht. Jetzt passiert quasi das selbe wie vorhin, nur mit Helium anstatt Wasserstoff. Der Kern fällt in sich zusammen; es wird heiß genug, dass Helium in einer Schale um den Kern herum fusionieren kann (während noch weiter außen der Wasserstoff natürlich immer noch fusioniert und neues Helium produziert). Der Stern beginnt wieder, sich aufzublähen und seine Oberfläche kühlt weiter ab.
In Wahrheit sind die Vorgänge natürlich alle deutlich komplexer als ich sie beschrieben habe, aber das reicht fürs Erste. Es reicht auf jeden Fall, um jetzt endlich die Sache mit dem Riesenast zu klären. Und dafür müssen wir noch einen kurzen Ausflug zum Hertzsprung-Russell-Diagramm machen. Darüber habe ich in einer der allerersten Folgen der Sternengeschichten gesprochen. Dieses Diagramm ist eines der wichtigsten Instrumente in der Astronomie. Ganz simpel gesagt handelt es sich um ein Diagramm, bei dem auf der x-Achse die Temperatur des Sterns aufgetragen wird, und zwar so, dass hohe Temperaturen links sind und tiefe Temperaturen rechts. Auf der y-Achse trägt man die Helligkeit ein, so dass helle Sterne oben sind und weniger helle weiter unten. Ein Stern, der noch quasi mitten im Leben steht, ändert weder seine Helligkeit noch seine Temperatur - das ist ja alles im Gleichgewicht. Er hat in dieser Phase also einen fixen Platz im Diagram: Kühle Sterne leuchten schwach; heiße Sterne leuchten hell und wenn wir alle möglichen Sterne in so ein Diagramm einzeichnen, kriegen wir Punkte entlang einer Linie, die von links oben nach rechts unten verläuft. Diese Linie nennt man die "Hauptreihe", weil sie eben die Phase markiert, in der ein Stern den hauptsächlichen Teil seines Lebens verbringt.
Als ich vorhin von dem erzählt habe, was in den späten Phasen eines Sternenlebens passiert, habe ich auch immer wieder gesagt, dass die Leuchtkraft sinkt oder die Temperatur steigt, und so weiter. Das heißt aber auch: Wenn ein Stern in diese Endphase seines Lebens kommt, dann fängt er an, im Hertzsprung-Russell-Diagramm herumzuwandern. Die erste Phase die ich beschrieben habe, war die der Roten Riesen: Ein Stern wird kühler und gleichzeitig heller, weil er sich aufbläht. Im Hertzsprung-Russell-Diagramm entspricht das also einer Linie, die vom Startpunkt irgendwo auf der Hauptreihe nach rechts oben verläuft. Wenn dann der Heliumblitz einsetzt, wird der Stern ein klein wenig heißer und kaum noch heller. Er wandert im Diagramm jetzt also wieder ein Stück nach links und gleichzeitig nur wenig oder gar nicht nach oben. Die Linie knickt also fast horizontal nach links ab. Dann, wenn auch die Heliumschalen zu fusionieren beginnen, bläht sich der Stern wieder auf, wird wieder heller und kühler - und folgt im Laufe der Zeit einer Linie, die erneut nach rechts oben im Diagramm verläuft, fast parallel zur ersten Linie der er während der Phase als roter Riese gefolgt ist.
Ich weiß, es ist ein wenig schwierig sich das ohne Bilder vorzustellen. Aber ich habe das trotzdem so ausführlich erklärt, weil man nur so verstehen kann, was mit dem Begriff "Asymptotischer Riesenast" gemeint ist. Ich habe vorhin schon von der "Hauptreihe" geredet, dem Bereich im Hertzsprung-Russell-Diagramm, in dem sich die Sterne während ihrer normalen Lebensphase befinden. Und genau so wie man diesem Bereich einen Namen gegeben hat, haben auch die anderen Regionen Namen, in denen sich ein Stern während seiner Entwicklung befinden kann. Wenn man alle möglichen Linien einzeichnet, denen Sternen folgen können, dann sieht es fast so aus wie Äste, die aus der Hauptreihe herauswachsen und darum hat man sie auch so genannt. Die Linie, entlang der sich ein Stern während seiner Phase als Roter Riese nach rechts oben bewegt, heißt "Roter Riesenast". Wenn die dann horizontal nach links abknickt, weil der Heliumblitz eingesetzt hat, befindet sich der Stern auf dem "Horizontalast". Danach kommt er auf die Linie, die parallel neben dem Riesenast wieder nach rechts oben führt. Die eine Linie nähert sich also quasi der anderen an und man hat dafür den mathematischen Fachbegriff der Asymptote verwendet, auch wenn es streng genommen mathematisch nicht korrekt ist. Aber das kümmert die Astronomie in dem Fall nicht und man nennt die Linie, entlang der sich ein Stern in dieser Phase seines Lebens bewegt trotzdem den "Asymptotischen Riesenast". Auf englisch heißt das "asymptotic giant branch" oder kurz "AGB" und ein Stern, der gerade diese Entwicklung durchmacht wird AGB-Stern genannt.
Auch unsere Sonne wird diesem Weg folgen. In 5 bis 6 Milliarden Jahren wird sie die Hauptreihe verlassen und sich entlang des Roten Riesenastes entwickeln. Sie wird einen kurzen Schlenker am Horizontalast einlegen, bevor sie als AGB-Stern auf den Asymptotischen Riesenast einschwenkt. Und dann? Dann ist ihr Leben als Stern bald vorbei. Sie wird größer werden, als sie es als Roter Riese gewesen ist; ihr Inneres wird immer heißer werden und der Druck der Strahlung immer größer. Im Abstand von einigen zehn- bis hunderttausend Jahren werden mehrere Heliumblitze stattfinden, je nachdem in welcher Schale um den Kern das Helium gerade zu fusionieren beginnt. Dabei wird die freiwerdende Strahlung so viel Druck ausüben, dass sie sich nicht nur aufbläht, sondern Teile ihrer äußeren Schichten komplett hinaus ins All pustet. Sie verliert immer mehr Masse, wodurch in den Schalen um den Kern immer weniger bleibt, was fusionieren kann. Am Ende bleibt nur ein Kern übrig, in dem keine Fusion mehr stattfindet, der aber immer noch heiß genug ist, um die abgestoßenen Gasschichten zum Leuchten anzuregen. Das ist die Phase der "Planetarischen Nebel", von denen ich in Folge 303 ausführlich gesprochen habe und wenn die Gasschichten sich irgendwann verflüchtigt haben, bleibt nur der fusionslose Kern übrig beziehungsweise das, was wir einen "Weißen Zwerg" nennen. Aber weder einen weißer Zwerg noch einen planetarischen Nebel kann man als "Stern" bezeichnet. Das letzte Mal, das unsere Sonne diesen Status verdient hat, ist in ihrer Phase als AGB-Stern am Asymptotischen Riesenast.
Verglichen mit den Milliarden von Jahren, die ein Stern davor auf der Hauptreihe verbringt, ist die Zeit am Asymptotischen Riesenast verschwindend kurz. Dort verbringt er höchstens ein paar Millionen Jahren. Trotzdem passieren währenddessen in seinem Inneren so viele komplexe Dinge, dass die Erforschung der AGB-Sterne eine eigene Disziplin innerhalb der Astronomie ist. Die AGB-Phase der Sterne hat zum Beispiel die chemische Entwicklung des Universums massiv geprägt; viele chemische Elemente können nur in dieser kurzen Zeit unter diesen speziellen Bedingungen entstehen. Aber das ist wieder eine ganz andere Geschichte. Auch wenn Sterne nur kurze Zeit am Asymptotischen Riesenast verbringen, reicht es natürlich trotzdem um darüber noch sehr viel mehr Geschichten erzählen zu können.
Sternengeschichten Folge 685: Die dicken und die dünnen Scheiben der Galaxien
Bei einer "dicken Scheibe" denkt man vermutlich zuerst an das, was man sich von einem Kuchen abschneiden möchte und die dünne Scheibe ist das, was man sich dann auf den Teller legt, wenn man zu viele dicke Scheiben gegessen hat. Aber in dieser Folge geht es heute natürlich nicht ums Essen. Es geht um Galaxien und darum, wie sie aufgebaut sind. Und vor allem geht es darum, was wir aus diesem Aufbau über die Entstehung und Entwicklung der Galaxien lernen können.
Die Sonne ist Teil der Milchstraße, einer Galaxie die aus ein paar hundert Milliarden Sternen besteht und bei der es sich um eine sogenannte "Spiralgalaxie" handelt. Ich habe in den vergangenen Folgen immer wieder über die verschiedenen Arten von Galaxien gesprochen und bei den Spiralgalaxien meistens erklärt, dass man dort zwei hauptsächliche Komponenten unterscheiden kann. Einerseits eine kugelförmige Zentralregion die dicht mit Sternen besetzt ist, den sogenannten "Bulge". Dieser Bulge befindet sich inmitten einer großen Scheibe aus Sternen, die sich dort spiralförmig anordnen und weniger dicht beieinander stehen als im Bulge. Und das ist auch richtig - aber wie so oft ist es nicht das komplette Bild. Aber das haben wir erst gemerkt, als wir uns die Spiralgalaxien ganz genau angesehen haben.
Normalerweise ist das, was ich vorhin gerade gesagt habe, auch genau das, was man sehen kann, wenn man Aufnahmen von fernen Spiralgalaxien macht. Man sieht eine Scheibe mit Spiralarmen und ein helles Zentrum. Im Jahr 1979 hat dann aber der amerikanische Astronom David Burstein eine Arbeit über die Helligkeitsverteilung in lentikulären Galaxien veröffentlicht. Was lentikuläre Galaxien sind, habe ich in Folge 591 ausführlich erklärt; ist aber jetzt auch gar nicht so relevant. Viel wichtiger ist, dass sich Burstein mit der vertikalen Helligkeitsverteilung beschäftigt hat, auch wenn das vielleicht eher ein klein wenig öde klingt anstatt wichtig. Aber im Prinzip geht es um folgendes: Wenn wir ferne Galaxien untersuchen, dann können wir dort nur in ganz seltenen Fällen tatsächlich einzelne Sterne sehen. Das geht nur bei unseren nächsten Nachbargalaxien; von allen anderen sehen wir nur eine leuchtende, scheibenförmige Struktur. Aber wir sind natürlich trotzdem an den Details zum Aufbau der Galaxie interessiert. Der genaue Prozess um das zu erreichen, ist selbstverständlich sehr komplex und aufwendig, aber kurz gesagt, läuft es so: Man misst die Helligkeit der Galaxie, aber nicht im Ganzen, sondern in verschiedenen Bereichen. Man kann zum Beispiel Linien gleicher Helligkeit bestimmen; ein wenig so wie man es in der Meteorologie mit Temperatur und Luftdruck macht. Dann kann man auf den Landkarten Isothermen und Isobaren einzeichnen; in der Astronomie sind dass dann dementsprechend Isophoten. Aber die Bezeichnungen sind auch gar nicht so wichtig. Man verbindet die Punkte gleicher Helligkeit und dann kriegt man zum Beispiel eine Kurve, die das Zentrum der Galaxie umschließt, wo sich der dicht mit Sternen besetzte und damit auch sehr helle Bulge befindet. Außerhalb dieser Kurve ist es dann weniger hell, dh. dort müssen auch weniger Sterne sein, noch weiter außerhalb ist es noch weniger hell, und so weiter. Aus den Details der Struktur der Isophoten kann man dann ableiten, wie viele Sterne sich in welchem Abstand vom Zentrum befinden müssen und die Struktur der Galaxie selbst rekonstruieren.
David Burstein hat 1979 Galaxien untersucht, die wir "edge-on" sehen. Das heißt, von uns aus gesehen blicken wir genau auf die Kante der Scheibe. Wir sehen also keine Spiralarme - dafür müssten wir mehr von "oben" auf die Scheibe schauen. Aber Burstein wollte wissen, wie dick die Scheiben sind und hat dafür genau die Helligkeitsmessungen gemacht, die ich gerade erklärt habe und dann probiert, daraus mit Modellen abzuleiten, wie groß Scheibe und Bulge sind. Dabei hat Burstein gemerkt, dass das nicht so gut funktioniert, zumindest dann nicht, wenn man auch den Teil der Scheibe vernünftig berücksichtigen will, der am wenigsten hell leuchtet. Er hat nur dann ein brauchbares Ergebnis bekommen, wenn er in seinem Modell zwei Scheiben verwendet. Eine dünne Scheibe, um die herum sich auch noch eine dicke Scheibe befindet. Nur die Modelle in der die Scheibe aus diesen beiden Komponenten besteht waren in der Lage, die Helligkeitsmessungen vernünftig zu beschreiben.
Und weil die Astronomie bei der Namensgebung oft erstaunlich unkreativ ist, sind dass die Bezeichnungen, die man auch heute noch verwendet: Dicke Scheibe und Dünne Scheibe. Und jetzt könnte man sich natürlich denken, warum man da eine eigene Folge der Sternengeschichten machen muss. Dann haben die Spiralgalaxien halt eine dünne und eine dicken Scheibe? Was ist da so außergewöhnlich daran. Beziehungsweise: Wenn die dünne Scheibe quasi innerhalb der dicken Scheibe liegt, ist dass dann nicht eigentlich immer noch nur eine Scheibe?
Das sind gute Fragen und wie üblich ist die Sache nicht so einfach, wie sie auf den ersten Blick klingt. Die Sterne in einer Galaxien sind ja nicht gleichmäßig verteilt. Ich habe zu Beginn schon erwähnt, dass es den Bulge gibt, in dem die Sterne viel dichter beieinander stehen als in der Scheibe. Und in der Scheibe gibt es die Spiralarme aus Sternen und die Bereiche dazwischen, wo sich weniger Sterne befinden. Die dicke und die dünne Scheibe unterscheiden sich auf eine ähnliche Weise: Die meisten Sterne einer Galaxie findet man in der dünnen Scheibe; sie ist quasi das, was wir sehen, wenn wir eine Spiralgalaxie anschauen. In der dicken Scheibe gibt es viel weniger Sterne, auch wenn sie ausgedehnter ist. In der Milchstraße hat die dünne Scheibe eine Dicke von etwa 1000 Lichtjahren und dort befinden sich 95% aller Sterne, die nicht zum Bulge gehören. Die dicke Scheibe ist zwischen 2000 und 3600 Lichtjahren dick. Aber viel interessanter ist, dass sich dünne und dicke Scheibe nicht einfach nur durch die Anzahl der Sterne unterscheiden. Die Sterne der dicken Scheibe unterscheiden sich vor allem durch ihre Bewegung, ihr Alter und ihre chemische Zusammensetzung. Sie enthalten weniger schwere Elemente (also Elemente, die kein Wasserstoff oder Helium sind) als die Sterne in der dünnen Scheibe und sie sind alle viel älter. Die Sterne in der dicken Scheibe sind also grundlegend anders als die der dünnen Scheibe und wenn wir wüssten, warum es in den Galaxien diese beiden Sterngruppen in den beiden Komponenten der Scheibe gibt, dann könnten wir daraus viel über die Entstehung und Entwicklung der Galaxien lernen.
Man hat einige Hypothesen entwickelt, warum das so sein könnte. Zum Beispiel, weil Galaxien ja wachsen, in dem sie mit anderen Galaxien verschmelzen. Die dicke Scheibe könnte ein Überrest so einer alten Galaxie sein. Oder die Sterne der dicken Scheibe könnten früher aus der jungen Scheibe hinaus geworfen worden sein, was vor allem die Unterschiede in ihrer Bewegung erklären würde. Es gibt noch weitere Erklärungen, die alle aber nicht wirklich exakt passen. Im Juni 2025 haben Daten des James-Webb-Weltraumteleskops dann neue Erkenntnisse gebracht. Man hat 111 Galaxien beobachtet, in unterschiedlichen Distanzen. Teilweise hat das Licht bis zu 11 Milliarden Jahren bis zu uns gebraucht; wir haben also Galaxien gesehen, die im frühen Universum entstanden und noch nicht so weit entwickelt sind und Galaxien, die uns näher sind und die sich schon so lange entwickelt haben wie die Milchstraße. Die Astronominnen und Astronomen haben dabei Galaxien gefunden, die eine dicke und dünne Scheibe haben - und Galaxien, die nur eine einzige Scheibe besitzen. Eine genaue Analyse der Daten hat gezeigt, dass eine typische Galaxie zuerst mit nur einer Scheibe gebildet wird, nämlich der dicken Scheibe. Erst später entwickelt sich dann daraus auch eine dünne Scheibe. Das läuft vermutlich so: Eine junge Galaxie hat in ihrer - einen - Scheibe jede Menge Gas, das turbulent durch die Gegend wirbelt. Aus diesem Gas entstehen jede Menge Sterne, die dann das turbulente Gas stabilisieren. Die Bewegung von Gas und Sternen wird stabiler und sie sammeln sich einer dünneren Scheibe an; das, was zurück bleibt ist dann die dicke Scheibe. Und weil sich das meiste Gas in der dünnen Scheibe befindet, können dort weiterhin neue Sterne entstehen, während die dicke Scheibe nur von den alten Sternen bevölkert wird, und keine jungen mehr nachkommen. Wann dieser Wechsel von einer zu zwei Scheiben im Leben einer Galaxie passiert, hängt von ihrer Masse ab. Je mehr Masse, desto schneller passiert es, denn desto schneller können ausreichend viele Sterne entstehen, die das Gasstabilisieren.
Es gibt vieles, was wir noch nicht über Galaxien wissen; auch über unsere eigene Milchstraße. Galaxien sind eben wirklich langlebige Objekte und wir sehen immer nur einen kurzen Ausschnitt aus ihrem Jahrmilliarden langen Leben. Aber wenn wir genau genug hinschauen, dann können wir Spuren der Vergangenheit finden; Spuren, wie die Aufteilung der Sterne in eine dicke und eine dünne Scheibe. Spuren, die uns zeigen, was vor Milliarden Jahren passiert ist und auch in der Milchstraße passiert sein muss.
Sternengeschichten Folge 684: Die Geschichte des Tierkreis
Wer diesen Podcast regelmäßig hört hat höchstwahrscheinlich absolut kein Problem, alle Planeten des Sonnensystems aufzuzählen. Aber in der allgemeinen Öffentlichkeit ist das etwas, was viele Menschen nicht so ohne Probleme hinbekommen. Was hierzulande aber so gut alle Leute kennen, ist ihr Sternzeichen. Egal ob man an Astrologie glaubt oder nicht: Wir wissen ob wir Löwe, Schütze, Widder oder was auch immer sind. Wir kennen die 12 Sternbilder des Tierkreis, wie man die Gesamtheit der astrologischen Sternzeichen nennt.
Das ist einerseits natürlich ein bisschen tragisch, zumindest aus meiner Sicht als Astronom. Aber andererseits ist es auch irgendwie verständlich, jedenfalls aus historischer Sicht. Denn die Sternzeichen sind älter als die Astronomie. Oder besser gesagt: Die Sternzeichen sind in gewissen Sinne die Grundlage der Astronomie. Und damit will ich nicht einfach nur sagen, dass die Menschen halt früher Astronomie und Astrologie vermischt haben und historisch gesehen beide Disziplinen den selben Ursprung haben. Sondern dass die Entwicklung des Tierkreises ein wichtiger Schritt hin zu dem war, was viel später einmal die moderne Astronomie geworden ist. Und ja, der Tierkreis ist etwas, was entwickelt wurde, als Werkzeug, um den Himmel besser verstehen zu können.
Es lohnt sich also, einen Blick auf die Geschichte des Tierkreises zu werfen und wie er einerseits mit den modernen Sternzeichen zusammenhängt und andererseits mit der Astronomie. Und natürlich muss so eine Geschichte im Rahmen dieser Podcastfolge unvollständig bleiben; denn sie wäre erstens viel zu lang und zweitens kennt auch die Forschung noch längst nicht alle Details.
Aber wir können auf jeden Fall einmal festhalten, dass die Menschen immer schon zum Himmel geschaut und darüber nachgedacht haben, was es dort zu sehen gibt. Wie sollte es auch anders sein: Der Sternenhimmel übt auch heute noch eine enorme Faszination auf uns aus und das war früher noch viel mehr der Fall. Einerseits, weil die Sterne viel besser zu sehen waren. Wenn es Nachts dunkel geworden ist, war es richtig dunkel und zwar überall auf der Welt. Und andererseits war es auch wichtig, die Sterne zu beobachten. Wenn man lange genug und genau genug hinsieht, dann erkennt man Rhythmen in der Bewegung der Punkte am Himmel. Diese Rhythmen kann man nutzen, um einen Überblick über die Zeit zu gewinnen. Man kann dann vorhersagen, wann zum Beispiel der Winter kommt und wann er wieder aufhören wird. Man weiß, wann man die Saat ausbringen und wann man ernten kann. Und so weiter: Wissen dieser Art war früher überlebenswichtig und die einzige Möglichkeit es zu erhalten war der Blick in die Sterne.
Was die Menschen da gesehen und vor allem, was sie sich gedacht haben, lässt sich heute schwer rekonstruieren. Aber es gibt Quellen, die uns ein wenig sagen können. Zu den wichtigsten gehört wahrscheinlich das MUL.APIN und das wäre mindestens eine eigene Folge wert. Es handelt sich dabei um eine Zusammenstellung des babylonischen Wissens über den Himmel. Die ältesten Version die wir auf Keilschrifttafeln gefunden haben, ist über 2500 Jahre alt und es würde viel zu weit führen, über alles zu sprechen, was dort an Wissen zu finden ist. Es gibt Listen mit Sternbildern, mit Namen der Planeten, Regeln zur Berechnung eines Kalenders, Regeln für Schaltjahre, Listen mit Daten für den Auf- und Untergang von Sternen, der Sonne, die Bewegung der Planeten, und so weiter. Für die Geschichte des Tierkreises ist aber vor allem Liste 6 von Teil 1 des MUL.APIN interessant. Dort findet man die "Sternbilder im Mondpfad". Das heißt: Dort sind alle Regionen des Himmels aufgelistet, durch die sich der Mond im Laufe eines Monats bewegt.
Und das war neu. Davor, in der noch älteren Astronomie von Mesopotamien hat man auch Sternkarten gehabt. Man hat den Himmel in Zonen eingeteilt. Man hat den Himmel benutzt, um Kalender zu erstellen und die Landwirtschaft zu organisieren. Aber es gab noch nichts, was den heutigen Sternzeichen ähnelt. Erst in der babylonischen Astronomie hat man die Mondbahn als eine Art Strukturlinie definiert (zumindest ist die babylonische Astronomie die erste, von der wir das wissen). Der Kalender in Babylonien war am Mond und seinen Phasen orientiert, das heißt wenn man einen guten Kalender haben will, muss man auch so gut wie möglich wissen, wie sich der Mond bewegt. Der Mond braucht für eine Runde um die Erde circa 28 Tage, das heißt in diesem Zeitraum bewegt er sich einmal um den Himmel herum. Er durchquert auf seiner Bahn auch immer wieder die selben Sternbilder und deswegen haben diese in der babylonischen Astronomie besondere Bedeutung erlangt.
Die Sterngruppen, durch die der Mond sich regelmäßig bewegt, waren nicht mehr nur Bilder, die mit der Mythologie oder der Religion zu tun haben. Es waren gewissermaßen die Koordinaten entlang einer Himmelskarte. Denn man konnte damals ja nicht so einfach die Position von Himmelsobjekten messen wie heute. Man hatte keine präzisen Messinstrumente, sondern hat dafür die Sternbilder benutzt. Sie waren Referenzpunkte am Himmel, mit denen man entsprechende Zyklen erkennen und Berechnungen durchführen konnte. Im MUL.APIN sind 17 dieser Sternbilder gelistet. Manche davon sind dieselben, die wir auch heute noch so nennen, zum Beispiel der Löwe, der Krebs oder die Zwillinge. Manche haben andere Namen: Was wir heute "Schütze" nennen war damals Pabilsang, eine Gottheit. Zu den 17 Sterngruppen zählen auch welche, die heute keine eigenen Sternbilder sind, wie zum Beispiel die Plejaden oder Sternbilder wie der Orion, die mit den modernen Sternzeichen nichts zu tun haben. Die Hervorhebung der Sternbilder entlang der Bahn des Mondes war noch nicht das, was wir heute den Tierkreis nennen. Aber es war der erste Schritt dazu.
Die 17 Stationen entlang der Mondbahn waren auch nicht alle gleich groß und es waren eben 17 und nicht die 12 Sternbilder im Tierkreis, die wir heute kennen. Aber man hatte nun zumindest schon einmal die Mondbahn als zentrale Strukturlinie am Himmel definiert. Und dann kam das, was die Forschung den "zodiacal turn" nennt ("Zodiak" ist ein anderes Wort für den Tierkreis). Auch hier sind die Details erstens zu umfangreich um sie hier komplett darzustellen und zweitens immer noch Teil der aktuellen historischen Forschung. Aber irgendwann, vor circa 2500 Jahren wurde die Sache mit der Mondbahn standardisiert. Man hat sie in 12 gleich große Abschnitte eingeteilt. Warum es genau 12 sind, ist noch nicht abschließend geklärt. Aber es hat mit Sicherheit damit zu tun, dass es sich dann einfacher rechnen lässt. In der babylonischen Mathematik hat man ein Zahlensystem verwendet, das auf der Zahl 60 basiert. Und 60 lässt sich gut durch 12 teilen. Ein kompletter Kreis, also eine ganze Runde um den Himmel herum, hatte 6 mal 60, also 360 Grad und geteilt durch 12 gibt das Abschnitte zu je 30 Grad. Diese Einteilung ist - aus Sicht der babylonischen Mathematik - einfach und elegant und dann passt das auch noch gut zu der Anzahl an Monaten im Jahr, die zwar nicht exakt 12 beträgt, aber immerhin fast. Mit dieser Einteilung hat man sich auch von den konkreten, an einem bestimmten Ort sichtbaren Sternbildern als Referenz gelöst und eine einheitliche Struktur geschaffen, mit dem man gut rechnen kann. Oder anders gesagt: Der Himmel ist auf einmal berechenbar geworden, dass ist der "mathematical turn", der mit dem "zodiacal turn" einhergegangen ist. Die 12 Abschnitte sind zwar nach Sternbildern am Himmel benannt worden, waren aber eher Recheneinheiten, als konkrete Ansammlungen von Sternen. Der Tierkreis war ein abstraktes Koordinatensystem, der aus der Notwendigkeit entstanden ist, die Mondbewegung irgendwie zu standardisieren.
Damit war einerseits die Grundlage für das geschaffen, was sich im Laufe der Jahrtausende zur modernen Astronomie entwickelt hat, also eine systematische Verfolgung der Bewegung der Himmelskörper und ihre mathematische Beschreibung, mit der man in der Lage war, entsprechende Vorhersagen über zukünftige Position zu treffen und Modelle zu entwickeln, die den Kosmos beschreiben. Andererseits hat man dadurch natürlich auch die Möglichkeit geschaffen, die Astrologie auf eine Art und Weise zu betreiben, wie wir sie heute kennen. Früher hat man - vereinfacht gesagt - den Himmel betrachtet und nach "Omen" gesucht, nach speziellen Ereignissen oder ähnlichen Vorkomnissen. Nun konnte man auch hier konkrete Rechnungen und Vorhersagen machen. Man konnte die Position von Sonne, Mond und der Planeten anhand ihrer Stellung im Tierkreis kategorisieren, ihnen Bedeutungen zuordnen und die Sternzeichen im Tierkreis gewissermassen als Marker für die Identität von Individuen verwenden.
Die Entwicklung des Tierkreises war natürlich nur der Anfang. Was vor 2500 Jahren in Babylonien begonnen hat, hat sich in den Jahrtausenden danach immer weiter entwickelt. Das gilt für die Astrologie und die Erstellung der Horoskope und das gilt auch für die wissenschaftliche Astronomie. Im 2. Jahrhundert vor Christus hat der griechische Astronom Hipparch zum Beispiel entdeckt, dass sich die Ausrichtung der Erdachse im Laufe der Zeit langsam ändert. Über diese Präzession habe ich ja schon in anderen Folgen ausführlich gesprochen, aber dieses Phänomen hat dazu geführt, dass sich die Position der Himmelskörper im Tierkreis verändert. Die klassischen astrologischen Sternzeichen, die damals noch identisch mit den entsprechenden Sternbildern am Himmel waren, sind das heute wegen dieser Verschiebung nicht mehr. Es hat bis in die frühe Neuzeit gedauert, bis Astrologie und Astronomie vollständig entkoppelt waren. Die Referenzlinie aus Babylonien, die der Mond über den Himmel gezogen hat, haben wir heute durch die Ekliptik ersetzt. Das ist die scheinbare Bahn der Sonne am Himmel bzw. die an den Himmel projizierte Bahn der Erde. Sie ist die Referenzebene des Sonnensystems, alle Planeten (und auch der Mond der Erde) bewegen sich mehr oder weniger in dieser Ebene um die Sonne und damit auch mehr oder wenig entlang der Ekliptik über den Himmel. Wir haben die klassischen Sternbildern und die, die danach gekommen sind, standardisiert und im frühen 20. Jahrhundert durch die 88 offiziellen Sternbilder der modernen Astronomie ersetzt. 13 davon werden von der Ekliptik durchquert, aber wir brauchen sie nicht mehr als Referenzpunkte in einem Koordinatensystem, weil wir jede Menge spezielle Systeme entwickelt haben, um die Position von Himmelskörpern anzugeben. Der Tierkreis spielt heute nur noch in der unwissenschaftlichen Astrologie eine Rolle. Aber als er vor 2500 Jahren erfunden wurde, war er der erste Schritt, um ein wenig wissenschaftliche Ordnung in den Himmel zu bekommen. Der Tierkreis war der erste Versuch, die scheinbar unverständliche Bewegung der Himmelskörper zu fassen.Er war der Anfang des großen Abenteuers, das die Astronomie heute ist.
Sternengeschichten Folge 683: Mondbeben
Der Mond ist im Inneren in Wahrheit hohl! Und dort leben komische, gefährliche Mondwesen! Der Mond ist hohl und eine Maschine, die von Aliens gebaut worden ist! Und bevor jetzt jemand verwirrt ist: Natürlich stimmt weder das eine noch das andere. Die erste Aussage stammt aus dem Buch "Die ersten Menschen auf dem Mond" des Science Fiction Autors H.G. Wells. Und die zweite Aussagen kommt von ein paar sowjetischen Wissenschaftlern aus den 1970er Jahren. Aber es gibt auch heute noch Menschen, die daran glauben, dass der Mond hohl ist und egal was sie sich dabei vorstellen, begründen sie ihre Behauptungen oft mit dem, was im Rahmen der Apollo-Missionen über das Innere des Mondes gesagt worden ist. Da hat man nämlich nicht nur einfach versucht, den Mond zu erreichen und auf seiner Oberfläche herum zu laufen. Man hat auch wissenschaftliche Forschung betrieben und die hat auch mit dem zu tun, was unter der Oberfläche passiert. Dass der Mond nicht hohl ist, hat man da natürlich auch schon gewusst. Aber man wollte wissen, wie das Innere der Mondes aufgebaut ist und man hat dafür die selben Instrumente eingesetzt wie auf der Erde. Nämlich Seismometer, die Erdbebenwellen messen können. Nur dass es in diesem Fall eben keine Erdbeben sind, sondern natürlich Mondbeben.
Ich komme später nochmal kurz auf die Verschwörungstheorien zum hohlen Mond zurück. Zuerst schauen wir uns aber an, was die sehr viel spannendere Wissenschaft zu sagen hat. Ich habe in Folge 143 schon einmal davon erzählt, wie man Erdbeben nutzen kann, um mehr über das ansonsten unzugängliche Erdinnere erfahren kann. Es gibt unterschiedliche Arten von Wellen, die sich im Gestein auf unterschiedliche Weise ausbreiten können. Man kann messen, wie lange sie dafür brauchen und man kann messen, wo Erdbebenwellen überall registriert werden können. Wenn sie auf dem Weg durch die Erde verschiedene Gesteinsschichten durchqueren, werden sie abgelenkt oder reflektiert. Manchmal kommen sie auch gar nicht durch, zum Beispiel wenn sie auf Flüssigkeiten treffen. So hat man zum Beispiel entdeckt, dass der Erdkern tatsächlich aus flüssigem Metall besteht; man weiß, wie tief die Erdkruste reicht und wie dick der Erdmantel ist. Und so weiter. Aber auch wenn es nicht so tief hinab geht, kann man aus der Ausbreitung von Wellen im Gestein viel über seine Zusammensetzung erfahren. Deswegen produziert man in der Geologie auch oft künstliche, lokale Mini-Erdbeben, um gezielt bestimmte Regionen von Gestein der Erdkruste zu untersuchen. Und genau so etwas hat man im Rahmen der Apollo-Missionen auch auf dem Mond geplant.
Als Neil Armstrong und Buzz Aldrin im Juli 1969 als erste Menschen einen Fuß auf den Mond gesetzt haben, war ihr Job damit noch lange nicht erledigt. Sie hatten auch einen ganzen Schwung wissenschaftlicher Instrumente mit dabei, unter anderem das Passive Seismic Experiment Package (PSEP), ein Set aus simplen Messinstrumenten für seismische Wellen. Man hat sie knapp 17 Meter von der Mondlandefähre aufgestellt und man hat damit keine dramatischen Ereignisse gemessen. Vor allem hat man das gemessen, was Neil und Buzz gemacht haben. Ihre Schritte am Mond wurden von den Instrumenten registriert, ebenso die diversen Aktivitäten der Mondlandefährn. Es gab allerdings auch ein paar kleinere Ereignisse, die nichts mit der Anwesenheit der Menschen zu tun gehabt haben. Das waren zum Beispiel die Einschläge von Meteoriten auf dem Mond - aber recht viele Daten konnte man nicht sammeln, denn die Instrumente konnten nur mit einem Solarpanel betrieben werden und nach einem Mondtag war Schluss; nach 20 Erdtagen brach der Kontakt mit den Instrumenten ab. Aber schon mit Apollo 12 ist das nächste entsprechende Messinstrument auf den Mond geflogen und bei Apollo 14 und 16 gab es ein Update. Jetzt war es ein ASE, also ein Active Seismic Experiment. Hier hat man mehr oder weniger das gemacht, was die Geologie auch auf der Erde macht und von dem ich vorhin gesprochen habe. Man hat Geophone auf der Mondoberfläche ausgelegt. So nennt man - egal ob auf der Erde oder dem Mond - Geräte, die Schwingungen des Bodens in elektrische Spannungen umwandeln und somit aufzeichnen können. Dann hat man mit speziellen Geräten kleine Explosionen ausgelöst, um den Boden zum Schwingen zu bringen. Solche Mini-Beben breiten sich natürlich nicht durch den gesamten Mond aus. Aber es reicht, um das Gestein in der Nähe zu untersuchen und herauszufinden, wie der Untergrund beschaffen ist. Apollo 17, die letzte der Missionen des Programms, hat das dann noch einmal getoppt. Die Explosionen des Lunar Seismic Profiling Experiment waren größer.
Es waren aber nicht nur künstliche Explosionen die man genutzt hat, um Wellen im Gestein zu erzeugen. Man hat sogar das Aufstiegsantriebssystem der Mondlandefähre für die seismische Forschung genutzt. Dabei handelt es sich um den Raketenantrieb der oberen Stufe der Apollo-Mondlandefähre. Oder anders gesagt: Das ist das Antriebssystem, mit dem die Astronauten nach ihrem Besuch von der Mondoberfläche wieder zurück ins Weltall fliegen . Es trägt die Mondlandefähre hinauf ins All und wenn alle wieder ins Kommandomodul umgestiegen sind, braucht man es nicht mehr. Deswegen hat man es wieder auf den Mond stürzen lassen, wo es natürlich einen ordentlichen Rumms gibt, den man dann mit den Seismometern messen kann. Die Wellen können dabei ein paar Kilometer tief ins Gestein eindringen und als Messungen dieser Art von den Forscherinnen und Forschern diskutiert worden sind, wurde in Berichten darüber der Satz verwendet, dass der "Mond wie eine Glocke schwingt". Und - das haben sich zumindest die zu Beginn der Folge erwähnten Verschwörungsfans gedacht, wenn der Mond wie eine Glocke schwingt und eine Glocke innen hohl ist, dann muss auch der Mond hohl sein! Ob diese Leute dann auch geglaubt haben, dass die Mondlandung nur ein Fake war, ist allerdings überliefert…
Die Messinstrumente der Apollo-Missionen haben bis zum Jahr 1977 jedenfalls jede Menge Mondbeben aufgezeichnet; mehr als 10.000. Aber selbst die stärksten davon waren schwächer als die stärksten Beben auf der Erde. Die meisten waren so schwach, dass man ohne Messinstrumente kaum etwas davon mitbekommen würde und selbst die starken Beben würden hier auf der Erde vielleicht nur ein wenig die Wände wackeln lassen und keine gröberen Schäden anrichten.
Ein Grund für die Mondbeben ist seine Bewegung um die Erde. Wenn er sich dabei am erdnächsten oder erdfernsten Punkt seiner Bahn befindet, gibt es besondes viele Beben, was darauf hindeutet, dass es etwas mit der Gezeitenkraft zu tun haben muss, die die Erde auf ihn ausübt. Diese Beben entstehen circa 700 Kilometer tief unter der Oberfläche. Daneben gibt es aber auch noch Beben, die durch den Einschlag von Meteoriten ausgelöst werden und Beben die entstehen, wenn sich das Gestein durch den Wechsel von Tag und Nacht abkühlt oder aufheizt. Ein Tag auf dem Mond dauert ja 14 Tage, eine Nacht ebenso lange und während es am Tag bis zu 120 Grad heiß sein kann, kann die Temperatur in der Mondnacht auf bis zu -130 Grad absinken. Durch diese Schwankungen entstehen Spannungen im Gestein, die sich dann irgendwann abbauen und der Boden wackelt. Alle diese drei Arten von Mondbeben sind eher schwach; die starken kommen aus der vierten Gruppe, die Beben umfasst, die nur 50 bis 200 Kilometer tief unter der Oberfläche entstehen. Diese "seichten" Mondbeben sind nicht nur stark, sie dauern auch lange - bis zu 10 Minuten. Die Schwingungen werden also im Gestein des Mondes nur schwach gedämpft; auf jeden Fall aber schwächer als auf der Erde. Denn bei uns sorgt die Verwitterung dafür, dass das Gestein ein bisschen geschwächt wird. Es wird, vereinfacht gesagt, ein bisschen bröselig und lässt sich leichter deformieren; das dämpft die Erdbebenwellen. Auf dem Mond gibt es keine Verwitterung die durch Wind, Regen, Wasser und Eis ensteht. Bis auf die unmittelbare Oberfläche, die durch das Bombardement der Mikrometeoriten zerbröselt wird, ist das Gestein fest, trocken und kalt. Wenn es einmal zu schwingen beginnt, dann schwingt es!
Was wir noch nicht kennen, ist die Ursache dieser seichten Mondbeben. Dafür haben wir zuwenig Daten. Aus finanziellen Gründen wurden die Seismometer auf dem Mond im Jahr 1977 abgeschaltet. Und sie wären auch nicht weit genug über den Mond verteilt gewesen - die Instrumente standen ja nur auf den Stellen, wo die Apollo-Missionen gelandet sind. An den Polen zum Beispiel hat man noch gar nichts gemessen. Wenn wir mehr wissen wollen, müssen wir wieder zurück und es wäre gut, wenn wir mehr wissen, wenn wir wieder zurück zum Mond fliegen - ganz besonders dann, wenn wir auch länger bleiben wollen. Wie gesagt: Die schwersten Mondbeben sind, verglichen mit der Erde, nicht extrem stark. Aber doch stark genug, damit man sich beim Bau von Mondhabitaten Gedanken darüber machen muss.
Worüber man sich übrigens keine Gedanken muss, ist die Sache mit dem Mondraumschiff, das von Aliens gebaut worden ist. Diese Hypothese haben die sowjetischen Wissenschaftler Michael Vasin and Alexander Shcherbakov im Jahr 1970 veröffentlicht. Belege haben sie dafür keine gebracht, auch ansonsten nicht viel erklärt, nur dass der Mond eben in ferner Vergangenheit von irgendeiner Alienzivilisation gebaut worden sein soll. Das ganze war auch keine wissenschaftliche Arbeit, sondern ist in einer populärwissenschaftlichen Zeitschrift veröffentlicht worden und war am Ende vermutlich sowieso nur Propaganda. Denn ab den 1960er Jahren hat die Sowjetunion immer wieder mal Ideen aus der sogenannten "Ancient Astronaut"-Szene verbreitet. Das ist das, was hierzulande unter anderem Erich von Däniken verbreitet hat, also die Idee, dass Außerirdische in der Vergangenheit auf der Erde waren, dort die Pyramiden und jede Menge andere eindrucksvolle Bauwerke errichtet haben und gleichzeitig für die Mythen und Gründung aller möglichen Religionen verantwortlich sein sollen. So etwas hat der offiziell atheistisch-kommunistischen Sowjetunion natürlich gut in den Kram gepasst und man auf diesem Weg probiert, dem gläubigen Westen eins Auszuwischen.
So oder so: Der Mond ist nicht hohl und kein Raumschiff. Er ist ein Himmelskörper, über dessen Inneres wir noch viel zu wenig wissen. Aber immerhin wüssten wir, wie wir mehr herausfinden können. Mit Erdbeben und ihrer Erforschung kennen wir uns aus und wir würden auch mit den Mondbeben jede Menge Wissenschaft anstellen können. Wir müssten halt nur wieder zurück zum Mond, um sie auch ordentlich messen zu können.
Sternengeschichten Folge 682: Die Urwolke
"Gebet mir Materie, ich will eine Welt daraus bauen! Das ist, gebet mir Materie, ich will euch zeigen, wie eine Welt daraus entstehen soll."
Dieser Satz stammt von Immanuel Kant, dem deutschen Philosophen aus dem 18. Jahrhundert, den man eher für Aussagen kennt wie "Handle so, dass die Maxime deines Willens jederzeit zugleich als Prinzip einer allgemeinen Gesetzgebung gelten könne.", dem berühmten Kantschen Imperativ. Oder aber man kennt den Satz "Sapere aude! Habe Mut, dich deines eigenen Verstandes zu bedienen!". Das jedenfalls hat Kant sehr ausführlich getan und in den 80 Jahren seines Lebens haufenweise relevante philosophische Werke geschrieben. Nicht ganz so bekannt ist die Tatsache, dass Kant sich auch mit Astronomie beschäftigt hat. 1755 ist sein Buch "Allgemeine Naturgeschichte und Theorie des Himmels" erschienen und daraus stammt der Satz, den ich zu Beginn dieser Folge zitiert habe. Und wie man aus Materie eine Welt bauen kann: Genau das hat Kant darin erklärt.
Und er hat es vor allem ohne Rückgriff auf irgendeine Art der göttlichen Schöpfung erklärt, was für die damalige Zeit außergewöhnlich war. Mit seinen Gedanken hat Kant im 18. Jahrhundert Entdeckungen vorweg genommen, die erst fast 200 Jahre später tatsächlich gemacht worden sind. Aber fangen wir am Anfang an und das ist diesem Fall wörtlich zu verstehen. Denn genau der Anfang, also die Entstehung von Sonne und Erde, der anderen Planeten und des ganzen Sonnensystems: Das war eines der zentralen Themen in Kants Allgemeiner Naturgeschichte und Theorie des Himmels.
Es ist nicht möglich, den gesamten Inhalt von Kants astronomischer Forschung in einer Folge dieses Podcasts wiederzugeben. Er hat sich zum Beispiel ausführlich mit einer Darstellung der Theorien von Isaac Newton beschäftigt, die damals auch noch vergleichsweise neu waren. Kant hat sich dann - im Gegensatz zu Newton, auch intensiv darüber Gedanken gemacht, wo das alles herkommt. Er hat zuerst einmal festgestellt, dass es im Sonnensystem heute recht ordentlich zuzugehen scheint. Da ist die Sonne, die von sechs Planeten umkreist wird. Uranus, Neptun und Pluto waren damals ja noch nicht entdeckt. Alle bewegen sich in der selben Richtung um die Sonne und all ihre Bahnen liegen fast in der selben Ebene. Der Raum zwischen den Planeten ist leer und das war ein Problem. Denn wenn da nichts ist, dann kann es auch nichts geben, was die Bewegung der Himmelskörper irgendwie steuert; es gibt keine materielle Ursache für die Entstehung dieser Ordnung, weswegen Newton damals auch gesagt hat, dass es halt Gott war, der das alles so schön ordentlich eingerichtet und dann den Gesetzen der Gravitation überlassen hat, die Newton entdeckt hat.
Für Kant war das keine befriedigende Antwort. Und er hat sich etwas anderes ausgedacht. In seinem Buch schreibt er: "Ich nehme an: daß alle Materien, daraus die Kugeln, die zu unserer Sonnenwelt gehören, alle Planeten und Cometen bestehen, im Anfange aller Dinge in ihren elementarischen Grundstoff aufgelöset, den ganzen Raum des Weltgebäudes erfüllet haben, darinn jetzo diese gebildete Körper herumlaufen." Oder anders gesagt: Die Sonne, die Planeten und die Kometen sind nicht fix und fertig von irgendeinem Gott geschaffen worden. Sondern sie sind entstanden, aus ihren "elementaren Grundstoffen", also aus einer Art von ursprünglicher Materie. Denn, so Kant, "Dieser Zustand der Natur […] scheinet nur der einfachste zu seyn, der auf das Nichts folgen kann. Damals hatte sich noch nichts gebildet. Die Zusammensetzung von einander abstehender Himmelskörper, ihre nach den Anziehungen gemäßigte Entfernung; ihre Gestalt, die aus dem Gleichgewichte der versammleten Materie entspringet, sind ein späterer Zustand. Die Natur, die unmittelbar mit der Schöpfung gränzete, war so roh, so ungebildet als möglich." Oder, wieder ein wenig moderner formuliert: Am Anfang war so wenig wie möglich; zwar nicht Nichts, aber eben nur ein Haufen ursprünglicher Materie. Und daraus hat sich das Sonnensystem, so wie wir es heute beobachten gebildet.
Ja, was denn sonst, könnte man aus heutiger Sicht einwenden. Aber die heutige Sicht ist eben die Sicht von heute, und sie kann nur deswegen die Sicht von heute sein, weil sie irgendwann früher einmal entwickelt worden ist. Und dieses "früher" war zur Zeit von Kant, als es noch ein durchaus revolutionärer Gedanke war, zu behaupten, dass das Sonnensystem entstanden ist und nicht durch Schöpfung erzeugt wurde. Man kann das mit der Evolutionstheorie von Charles Darwin vergleichen. Dessen Werk "Über die Entstehung der Arten" ist erst mehr als 100 Jahre nach Kants Allgemeiner Naturgeschichte und Theorie des Himmels erschienen und auch damals war es noch bei weitem nicht selbstverständlich, auf eine natürliche Entstehung zu verweisen und auf Gottes Schöpfung zu verzichten.
Kant hat sich also eine Art "Urwolke" aus Teilchen vorgestellt, die sich alle bewegt haben. Durch Zusammenstöße und ähnliches konnten diese Teilchen ihre Bewegung aufeinander übertragen, und so hat sich im Laufe der Zeit eine gemeinsame Drehrichtung und eine Bewegung in einer gemeinsamen Ebene eingestellt. Es gab, so Kant, verschiedene Arten von Teilchen. Manche waren ein wenig dichter als andere und konnten so eine größere Anziehungskraft ausüben. Und die Kraft der Gravitation hat dazu geführt, dass sich dieser Urstoff zu immer größeren Klumpen zusammengeballt hat, bis am Ende die Sonne, die Planeten und der Rest des Sonnensystems entstanden ist. Und die Himmelskörper bewegen sich deswegen so, wie sie es tun, weil die Teilchen beim Zusammenballen nicht einfach alle in gerader Linie aufeinander zugestürzt sind. Es haben sich Wirbel gebildet, die zu einer Rotation geführt haben. Kant hat das alles noch sehr, sehr viel ausführlicher erklärt. Aber das war auf jeden Fall die Grundidee: In der Vergangenheit hat es eine "Urwolke" gegeben, in der sich Teilchen chaotisch bewegt haben. Daraus hat sich zuerst die Sonne gebildet, die dann von einer rotierenden Scheibe aus Teilchen umgeben war, in der sich wiederum die Planeten gebildet haben.
Viele der Details die Kant in seinen Gedanken angeführt hat, sind aus heutiger Sicht falsch. Aber die grundlegende Hypothese der Entstehung des Sonnensystems aus einer großen Wolke ist exakt das, wovon wir auch heute ausgehen. Trotzdem hat es gedauert, bis die Arbeit von Kant entsprechend anerkannt worden ist. Man hat sein Buch kaum beachtet und auch der französische Astronom Pierre-Simon Laplace hat es nicht gekannt, als er über 40 Jahre später, im Jahr 1796, seine "Nebularhypothese" veröffentlicht hat. Darin hat er behauptet, die Sonne wäre früher von einer Art riesiger Atmosphäre umgeben, die, weil die Sonne sie so stark aufgeheizt hat, sich über den ganzen Bereich des heutigen Sonnensystems ausgedehnt hat. Als die junge heiße Sonne dann abgekühlt ist, ist auch die Atmosphäre geschrumpft und die Materie darin hat sich verdichtet. Sie hat quasi einen Haufen Ringe um die Sonne gebildet, aus denen dann später die Planeten entstanden sind. Das ähnelt der Theorie von Kant insofern, als dass auch hier die Himmelskörper aus einer Art von Gas entstehen, das sich verdichtet. Es unterscheidet sich aber auch deutlich, denn einerseits hat Laplace nicht erklärt, wie die Sonne entstanden ist und andererseits wissen wir heute auch, dass das mit der Entstehung des Sonnensystems eben nicht so gelaufen ist, wie Laplace sich das so vorgestellt hat. Kant war wesentlich näher an der Wahrheit. Aber als seine Arbeit dann, fast 100 Jahre nach der Veröffentlichung, vom französischen Astronom François Arago wiederentdeckt und einer breiten Öffentlichkeit bekannt gemacht worden ist, hat man sie quasi mit der von Laplace zusammengeworfen und heute spricht man deswegen oft von der "Kant-Laplace-Theorie" zur Entstehung des Planetensystems. Aber immerhin: Sowohl Kant als auch Laplace konnten mit ihren Hypothese auf göttliche Schöpfungsakte verzichten, was aus Sicht der Wissenschaftstheorie definitiv einen großen Fortschritt darstellt.
Heute wissen wir natürlich ein wenig genauer Bescheid als zur Zeit von Kant. Wir wissen, dass die "Urwolke" nicht nur der Ursprung des Sonnensystems war, sondern von ein paar zehntausend Sternen. Sie war ungefähr 65 Lichtjahre groß und die "Urmaterie" in ihr bestand aus Wasserstoff und Helium, mit ein bisschen Staub, der aus diversen Verbindungen andere, schwerere Elemente zusammengesetzt war. Diese Wolke hat sich durch ihrene eigene Schwerkraft zusammengezogen und ist in kleinere Fragmente "zerbrochen", die aber immer noch ein paar Lichtjahre groß waren. Diese kleineren Bereiche sind dann selbst wieder kollabiert, vermutlich angeregt durch Supernova-Explosionen in der Nähe, die das Gas und den Staub durcheinander gewirbelt haben. Aus einem dieser Fragmente hat sich das Sonnensystem gebildet; die Sonne war aber nur einer von ein paar tausend bis zehntausend Sternen, die aus dieser Urwolke entstanden sind.
Es ist erstaunlich, dass Immanuel Kant schon in der Mitte des 18. Jahrhunderts eine Idee zur Entstehung des Sonnensystems entwickelt hat, die so nahe am heutigen Stand des Wissens ist. Aber gut, das war auch nicht das einzige astronomische Thema, bei dem Kant erstaunlich weitsichtig war. Aber das ist ein Thema für eine andere Folge der Sternengeschichten. Kant hat in seinem Buch auch geschrieben "Die Schöpfung ist niemals vollendet." - und das gilt auch für das Erzählen von Geschichten.
Sternengeschichten Folge 681: MESSENGER und die erste Umrundung des Merkur
Der Merkur ist der sonnennächste Planet unseres Sonnensystems. Man kann ihn mit freiem Auge sehen, aber es ist nicht immer leicht, ihn zu beobachten, eben weil er der sonnennächste Planet ist. Das bedeutet - wenig überraschend - dass er am Himmel immer irgendwo in der Nähe der Sonne sein muss. In der Nacht ist er also nicht da, man kann ihn nur in der kurzen Zeit sehen, in der die Sonne schon untergegangen ist, der Merkur aber noch über dem Horizont steht. Oder andersherum, kurz bevor die Sonne aufgeht, in der Morgendämmerung.
Mit ein bisschen Glück ist es aber gar nicht so schwer, den Merkur zu sehen. Deutlich schwerer ist es, ihn vor Ort zu erforschen. Gut, es ist immer schwer, irgendeinen Planeten zu erforschen. Es ist nicht einfach, zum Mars zu fliegen und dort Raumsonden zu landen; genau so schwierig ist es bei der Venus, und so weiter. Aber beim Merkur ist es noch einmal extra schwierig. Einerseits ist jede Raumsonde, die zu ihm fliegt, zwangsläufig sehr nahe an der Sonne. Dort ist die Temperatur sehr hoch; dort ist auch die Teilchenstrahlung die von der Sonne kommt sehr stark. Die Chance auf technische Probleme ist groß, wenn man zum Merkur fliegt und jede Raumsonde muss besonders robust und aufwendig gebaut werden. Andererseits ist so nahe an der Sonne natürlich auch ihre Gravitationskraft besonders stark. Je näher eine Raumsonde der Sonne kommt, desto stärker ist die Anziehungskraft und desto schneller wird sie. Und desto stärker muss man sie abbremsen, wenn man nicht einfach nur vorbeirauschen, sondern in eine Umlaufbahn einschwenken will. Bremsen braucht Treibstoff und je mehr Treibstoff man mitnehmen muss, desto komplexer und teurer wird eine Mission.
Es ist also kein Wunder, dass der Merkur das erste und für lange Zeit das letzte Mal am 29. März 1974 erreicht worden ist. Damals ist die amerikanische Raumsonde Mariner 10 in einem Abstand von 705 Kilometer an ihm vorbeigeflogen. Bremsen konnte man aber - wie ich gerade gesagt habe - nicht. Mariner 10 ist dann am 21. September 1974 und am 16. März 1975 nochmal vorbeigeflogen. Einmal sehr weit entfernt, in 50.000 Kilometer Abstand und einmal mit nur 375 Kilometern Distanz. Diese Vorbeiflüge haben immerhin gereicht, um 45 Prozent seiner Oberfläche zu kartografieren. Aber eigentlich ist das ja kein Zustand. Das war nicht mal die Hälfte der Oberfläche! Ein Planet wie Merkur hat es verdient, dass wir ihn uns ausführlich ansehen. Wenn es nur nicht so schwierig wäre…
Erst in den 1990er Jahren hat man sich wieder daran gemacht, einen Besuch bei Merkur zu planen. Ein entsprechender Entwurf wurde 1997 noch von der NASA abgelehnt, aber 1999 dann doch noch bewilligt. MESSENGER sollte das erledigen, was Mariner 10 nicht erledigen konnte: Nicht nur zum Merkur fliegen, sonder ihn auch umkreisen und im Detail studieren. Und MESSENGER ist nicht nur das englische Wort für "Botschafter", sondern natürlich auch ein Akronym für "MErcury Surface, Space ENvironment, GEochemistry and Ranging" was auf deutsch so viel heißt wie „Merkur-Oberflächen-, Umwelt-, Geochemie- und Entfernungsmessung“. Die Sonde war klein, nur 1,3 mal 1,4 mal 1,9 Meter groß. Aber sie hatte auch einen 2,5 mal 2 Meter breiten Schutzschild, um sie vor den Gefahren der nahen Sonne zu schützen. Beim Start hatte die Sonde ein Gewicht von 1093 Kilogramm. Davon waren aber nur 485 Kilogramm die Masse der Sonde selbst; der Rest war Treibstoff und der hätte nicht mal ausgreicht, um sie ausreichend zu bremsen.
Um die nötige Geschwindigkeit zu verlieren, um in eine Merkur-Umlaufbahn zu gelangen, musste man außerdem auch noch die Gravitation von Venus und Erde zum Bremsen nutzen. Der Start war eigentlich für März 2004 geplant, musste dann aber auf Mai 2004 verschoben werden. Da hat es auch nicht geklappt und am 2. August 2004 war das Wetter zu schlecht. Aber am 3. August 2004 hat es dann geklappt. MESSENGER hob mit einer Delta-II-Rakete von Cape Canaveral ab. Ein Jahr später gab es ein Swing-By an der Erde, noch ein Jahr später, im Oktober 2006 ein Swing-By-Manöver bei der Venus. 2007 kam Swing-By Nummer 2 bei der Venus und zwischen 2008 und 2009 ganze drei Swing-By-Manöver am Merkur selbst. Am 18. März 2011 war es dann soweit: Die Sonde hat 15 Minuten lang gebremst, was wirklich lang ist, und ist dabei um fast 3100 km/h langsamer geworden. Zusammen mit dem Geschwindigkeitsverlust durch die ganzen Swing-Bys davor hat das gereicht, um in eine Umlaufbahn um den Merkur zu gelangen. Dort ist MESSENGER dann bis 2015 geblieben um so viel wie möglich über den Planeten herauszufinden.
Und MESSENGER HAT viel herausgefunden. Zuerst einmal haben wir jetzt endlich eine vollständige Karte von Merkur. Man hat aber auch das bestätigt, was man vorher schon stark vermutet hat: Merkur hat einen absurd großen Kern aus Metall. Gut, so einen metallischen Kern haben auch die Erde und Venus, aber Merkur ist viel kleiner; Merkur ist sogar noch kleiner als der Mars. Merkur hat nur einen Durchmesser von circa 4880 Kilometern. Der metallische Kern der in ihm steckt hat einen Durchmesser von 4100 Kilometern, was etwas größer als der Mond und vergleichbar mit dem Kern der Erde ist. Wir wissen bis heute noch nicht genau, wie der Merkur zu so einem gewaltigen Kern aus Metall kommt. Vielleicht hat es mit seiner Nähe zur Sonne zu tun; vielleicht ist auch eine Kollision in der fernen Vergangenheit verantwortlich, bei der ein gewaltiger Einschlag fast die gesamte Kruste und Mantel des Merkur entfernt hat, der dann früher sehr viel größer gewesen sein muss.
Extrem spannend war die Entdeckung, die man im Jahr 2012 gemacht hat. Es gab Hinweise auf Wasser auf der Oberfläche des Merkur. Kein flüssiges Wasser natürlich, denn Merkur hat keine Atmosphäre und ohne entsprechenden Druck kann es kein flüssiges Wasser geben. Aber der sonnennahe Planet hat eben auch eine Durchschnittstemperatur von circa 167 Grad und die Maximalwerte bei voller Sonneneinstrahlung liegen bei circa 430 Grad. Auf so einer durcherhitzten Welt ist eigentlich kein Wasser zu erwarten. Aber, und das haben die Messungen von MESSENGER gezeigt: In der Nähe der Pole von Merkur gibt es Krater, in die niemals Sonnenlicht gelangt. Die Rotationsachse des Merkur ist quasi gar nicht geneigt; sie steht fast exakt senkrecht auf die Bahnebene. Und in Kratern am Nord- oder Südpol kann, sofern ihre Wände hoch genug sind, tatsächlich ewige Dunkelheit herrschen. Damit wird es dort natürlich auch nie heiß und es bleibt kalt genug, dass gefrorenes Wasser existieren kann. Das war schon überraschend genug, aber noch überraschender waren die Spuren von organischen Molekülen, die man in diesen Kratern entdeckt hat. Kein Leben natürlich, aber simple Stickstoff- und Kohlenstoffverbindungen, die eigentlich auch nicht auf seiner heißen Welt existieren sollten, die ständig der harten Strahlung der nahen Sonne ausgesetzt ist.
Man geht heute davon aus, dass Wasser und organische Moleküle durch Asteroiden und Kometen auf den Merkur gebracht worden sind, die dort in der Vergangenheit eingeschlagen haben. Aber um solche Details zu klären, war MESSENGER dann doch nicht lange genug und vor allem nicht nahe genug vor Ort. Die Raumsonde hat noch jede Menge mehr entdeckt; Spuren von Vulkanismus zum Beispiel, die darauf hindeuten, dass der Planet noch vor ein paar hundert Millionen Jahren aktiv gewesen sein könnte, womit man ebenfalls nicht gerechnet hat. Das Magnetfeld des Merkur hat sich als überraschend komplex herausgestellt, weil es direkt mit den magnetischen Phänomenen der Sonne in Wechselwirkung steht. Und so weiter: MESSENGER hat mehr als deutlich gezeigt, dass eine Mission zum sonnennächsten Planeten wichtig war. Nach Mariner 10 hat man zwar 30 Jahre warten müssen, aber besser spät als nie. Und zum Glück war MESSENGER auch nicht die letzte Mission. 2018 ist ihr BepiColombo ins All gefolgt, eine Raumsonde der Europäischen Weltraumagentur gefolgt. Aber trotzdem war MESSENGER die erste, die den sonnennächsten Planeten umkreist hat. Und deswegen passt es auch gut, dass sie ihre Mission dort beendet hat. Nach dem die Mission zweimal verlängert wurde, war dann irgendwer der Treibstoff endgültig zu Ende. Mit den letzten paar Tropfen hat man MESSENGER in Richtung Merkur gesteuert, wo sie am 30. April 2015 abgestürzt ist. Dort liegt sie jetzt, als erstes von Menschen gemachte Objekt, das die Oberfläche dieser seltsamen fernen und heißen Welt erreicht hat.