Meet the Microbiologist

Julie Wolf

The scientists behind the microbiology

  • 35 minutes 20 seconds
    Increasing Laboratory Capacity for TB Diagnosis With Aureliana Chambal

    ASM's Young Ambassador, Aureliana Chambal, discusses the high incidence of tuberculosis in Mozambique and how improved surveillance can help block disease transmission in low resource settings. 

    Ashley's Biggest Takeaways:
    • Mozambique is severely impacted by the TB epidemic, with one of the highest incidences in Africa (368 cases/ 100,000 people in the population).
    • Human-adapted members of the Mycobacterium tuberculosis complex (MTBC) belong to 7 different phylogenetic lineages.
    • These 7 lineages may vary in geographic distribution, and have varying impacts on infection and disease outcome.
    • For decades, 2 reference strains have been used for TB lab research, H37Rv, which Chambal mentions, and Erdman. Both of these belong to TB Lineage 4.
    • According to Chambal, the reference strains that we use for whole genome sequencing (worldwide) may be missing genes that are related the virulence (and/or resistance) of strains that are circulating in a given population and detected in clinical settings.
    • Chambal is endeavoring to employ a new strain to control these analyses and better understand transmission dynamics in the community setting.
    Featured Quotes: 

    The Schlumberger Foundation Faculty for the Future Fellowship is one of my proudest accomplishments for the 2023. I applied for this fellowship last year to pursue my Ph.D. It is a program that supports women coming from emerging and developing economies to pursue advanced research qualifications in science, technology, engineering and mathematics. I applied because I was looking to get more skills in microbiology, specifically tuberculosis, to pursue my Ph.D. at Nottingham Trent University.

    Pathway to Microbiology Research

    My trajectory is different because I have a bachelor’s in veterinary medicine. And during my undergrad, I always had more interest in the lab practice modules or disciplines. For the end of the [bachelor’s] project, I was looking to understand the anthelmintic effectiveness against the gastrointestinal parasites in goats. After I finished this project, I was looking to continue a related project, but unfortunately, I couldn't get work related to that.. In 2016, I applied for the National Institutes of Health of Mozambique, which is one of the biggest research institutions in my home country. That's when I was selected to work at the north region of Mozambique, specifically at the Nampula Tuberculosis Reference Laboratory. And then I moved to the public health laboratory as well, where I had the opportunity to work in the microbiology section. So, to be honest, my passion for microbiology started when I had the first contact with the TB lab, and then I couldn't separate myself from this area, tuberculosis. In 2016, I had the opportunity to receive a mentorship. Our lab, the TB lab of Nampula, received mentorship from the American Society for Microbiology. And we worked with Dr. Shirematee Baboolal; she was the mentor of our lab. The main idea of the program was to get the lab accredited and to build technical capacity in the lab. And to be honest, at the time, I didn't have much experience in lab techniques to detect or diagnosis tuberculosis. And I said to Dr. Shirematee, “I don't have much experience in this area, so, I don't know if I will be able to help you to accomplish these goals.” And she said, “If you want to learn, I can teach you, and you can be one of the best in this area.” And then we started training with her. It was very interesting. The passion she passed to us about microbiology—and tuberculosis, in particular—was one of the triggers for my passion in this area. So, to be honest, Dr. Shirematee Baboolal was one of the persons that triggered my interest from tuberculosis. So, I have to say thank you to her!

    Tuberculosis Genomic Diversity and Transmission Dynamics

    Mozambique is one of the higher burden countries of tuberculosis. So, our population is about 33 million people. And the case rate is high, it is approximately 360 per 100,000 people in the population, which is equivalent to over 110,000, which is equivalent 211,000 cases in the population. So, while I was working for the TB lab, I always had the desire to understand more about the transmission of the disease in the community. And I felt like I didn't have enough skills to do that; I didn't the tools to do that. And I said, “Okay, let me try to look to improve the skills.” That's why for my master's degree I tried to understand the genomic diversity of M. tuberculosis and see how we can see the gene content diversity within the lineage for which is the most spread lineage worldwide, and is predominant in Mozambique. Afterwards, I tried to expand to the other lineages. When I finished my master's degree, I felt that it was still missing something. I had the information about [TB] diversity, but I didn't get the point about transmission itself. That's why, when I went back and applied for my Ph.D., I structured my current project to specifically look at transmission and transmission clusters in the community. I'm trying to see how we can expand the gold standard of whole genome sequencing to try to make it applicable for all settings, including the low resources settings where most TB cases happen. So, M. tuberculosis itself doesn't have a lot of diversity between strains and within strains, because [strains] are very monomorphic. But you can find some genes that are different, specifically from the reference strain that we use, which is H37Rv. In the reference strain for M. tuberculosis, we saw is that many genes are missing—genes that are related to virulence. So, this information can be tricky, because it's the reference that we use worldwide to analyze our samples that come from whole genome sequencing. If we have genes missing, we are not [seeing] the complete information about the virulence of the bacterial strain that is circulating. So, my analysis was trying to understand how we can employ a new strain (that has at least most of the genes that are present in the other screens of the lineage) to control our analysis. Whole genome sequencing requires a lot of computational resources. So, the main idea is to try to extend that pipeline to make applicable to use in all settings. In Mozambique, we have whole genome sequencing equipment at the central level of the country, and the demand is high. But there is a queue for processing the samples. So, if we have a pipeline that [makes it so] anyone is able to analyze the data, we can have the results quick, and we can have more information for the public health sector. And with transmission studies, you can have a clearer idea of where the recent infection happened. We can see how many cases we have and when the transmission started. And then we can [try to] track and block the transmission.

    Involvement with ASM Young Ambassador Program

    So, I had the opportunity to hear about ASM’s Young Ambassador Program while I was working at the TB lab, in 2018. I spoke to Dr. Shirematee Baboolal and Dr. Maritza Urrego. And they told me about this position. Then, once I finished my masters [program], I applied for that position. I saw the requirements, and I felt like it was the right position for what I wanted to do for my community—to support the youth community and engage with my community back in Mozambique. I applied in 2020, and I got the position. And I have to say, it is one of the best things I have done so far. Because since the implementation of this program in Mozambique, I have interacted with students in schools and universities. We have developed a lot of workshops. I feel like I can contribute scientifically to improve their lives, to improve their academic lives. And recently, we launched a program called Microbiology Kids Club. We go to schools, in church, and we teach children about science, specifically microbiology. We use cartoons and paint microbes to explain the importance of the microbes for the community for our daily activities. And it's very interesting how they are engaged. I can feel that it's a way to develop the taste for science in the children. So, I'm very happy with this accomplishment. In this role of young ambassador, I feel like I can contribute to my community back home. I have so many ideas, so many dreams. I don't even know where to start! Because I have the ambitions to support my country back home. After I finish my Ph.D., I would like to create a robust technique that will help us to properly understand the [TB] transmission studies. So hopefully, with my Ph.D., I will be able to do that, or at least contribute something to support not only my country, but all low resources settings. And I would also like to be like to support some public health policies that can help us. Because we don't have like a strong component that involves the lab, the public health sector—I feel like everything is separated. We need to combine everything if we want to fight against tuberculosis. So, my desire is also to create a link between all these specific sites so we can make our fight against TB stronger. I want to continue [to drive] awareness about the support we need in low resource settings to control the fight against tuberculosis.

    Links for the Episode:
    9 March 2024, 3:53 am
  • 59 minutes 7 seconds
    Good Science, Bad Science and How to Make it Better with Ferric Fang and Arturo Casadevall

    The scientific process has the power to deliver a better world and may be the most monumental human achievement. But when it is unethically performed or miscommunicated, it can cause confusion and division. Drs. Fang and Casadevall discuss what is good science, what is bad science and how to make it better.

    Get the book! Thinking about Science: Good Science, Bad Science, and How to Make It Better

    26 January 2024, 10:37 pm
  • 44 minutes 29 seconds
    Using AI to Understand How the Gut-Brain Axis Points to Autism With James Morton

    Dr. James Morton discusses how the gut microbiome modulates brain development and function with specific emphasis on how the gut-brain axis points to functional architecture of autism.

    Watch James' talk from ASM Microbe 2023: Using AI to Glean Insights From Microbiome Data https://youtu.be/hUQls359Spo

    11 December 2023, 6:40 pm
  • 44 minutes 7 seconds
    Atypical Metabolism of Leishmania and Other Parasitic and Free-Living Protists With Michael Ginger

    Dr. Michael ginger, Dean of the School of Applied Sciences in the Department of Biological and geographical Science at the University of Huddersfield, in West Yorkshire, England discusses the atypical metabolism and evolutionary cell biology of parasitic and free-living protists, including Leishmania, Naegleria and  even euglinids.

    31 October 2023, 12:05 am
  • 31 minutes 49 seconds
    IBS Biomarkers and Diagnostic Diapers With Maria Eugenia Inda-Webb
    Dr. Maria Eugenia Inda-Webb, Pew Postdoctoral Fellow working in the Synthetic Biology Center at MIT builds biosensors to diagnose and treat inflammatory disorders in the gut, like inflammatory bowel disease and celiac disease. She discusses how “wearables,” like diagnostic diapers and nursing pads could help monitor microbiome development to treat the diseases of tomorrow.  

    Subscribe (free) on Apple Podcasts, Spotify, Google Podcasts, Android, RSS or by email.

    Ashley's Biggest Takeaways
    • Biosensors devices that engineer living organisms or biomolocules to detect and report the presence of certain biomarkers.  
    • The device consists of a bioreceptor (bacteria) and a reporter (fluorescent protein or light).
    • Inda-Webb’s lab recently published a paper in Nature about using biosensors (Sub-1.4 cm3 capsule) to detect inflammatory biomarkers in the gut. The work is focused on diagnosing and treating inflammatory bowel disease, but Inda-Webb acknowledged that that is a large research umbrella.
    • The next step for this research is to monitor the use of the biosensor in humans to determine what chemical concentrations are biologically relevant and to show that it is safe for humans to ingest the device.
    • It is believed that the gut microbiome in humans develops in the first 1000 days to 3 years of life.
    • Early dysbiosis in the gut has been linked to disease in adulthood. However, we do not have a good way to monitor (and/or influence) microbiome development.
    • Inda-Webb hopes to use biosensors in diapers (wearables) to monitor microbiome development and prevent common diseases in adulthood.
    • In 2015, Inda-Webb became ASM’s first Agar Art Contest winner for her piece, “Harvest System.”
    • Inda-Webb is the 2023 winner of the ASM Award for Early Career Environmental Research, which recognizes an early career investigator with distinguished research achievements that have improved our understanding of microbes in the environment, including aquatic, terrestrial and atmospheric settings.
    Featured Quotes:

    We engineer bacteria to sense particular molecules of interest—what we call biomarkers—if they are associated with a disease. And then, we engineer a way that the bacteria will produce some kind of molecule that we can measure—what we call reporter—so that could be a fluorescent protein or light, like the one that we have in this device. The issue is that inflammation in the gut is really very difficult to track. There are no real current technologies to do that. That is like a black box. And so, most of what we measure is what comes out from the gut, and has its limitations. It doesn't really represent the chemical environment that you have inside, especially in areas where you're inflamed. So, we really needed technologies to be able to open a window in these areas. The final device that I am actually bringing here is a little pill that the patient would swallow and get into the gut. And then they engineer bacteria that the biosensors, will detect, let's say, nitrous oxide, which is a very transient molecule. And the bacteria are engineered to respond to that in some way—to communicate with the electronics that will wirelessly transmit to your cell phone. And from there, to the gastroenterologist. We make the bacteria produce light. If they sense nitrous oxide, they produce light, the electronics read that, and the [information] finally gets into your phone. Part of the challenge was that we needed to make the electronics very very tiny to be able to fit inside the capsule. And also, the amount of bacteria that we use also is only one microliter. And so, imagine one microliter of bacteria producing a tiny amount of light. Finally, the electronics need to be able to read it. So that has been also part of the challenge. In this case, you have 4 different channels. One is a reference, and then the other 3 are the molecule of your choice. So, for example, what we show in the paper here is that we can even follow a metabolic pathway. So, you can see one more molecule turn into the other one, then into the other one. I'm really excited about that. Because normally we kind of guess as things are happening, you know, but here you can see in real time how the different molecules are changing over time. I think that's pretty exciting for microbiologist. The immediate application would be for a follow up. Let's say the patient is going to have a flare, and so you could predict it more much earlier. Or there's a particular treatment, and you want to see what is happening [inside the gut]. But for me, as a microbiologist, one of the things I'm most excited about will be more in the longer term. One of my favorite experiments that I do with the students is the Winogradsky column, and everyone gets super excited. So, we all have nice feelings for that. And it’s basically a column where we asked the students to bring mud from a lake, for example, and then some sources of nutrients. And then, after 6months, you will see all the layers, which is super pretty—beautiful, nice colors. But actually, that gives the concept of how the microenvironment helps to define where, or how, bacteria build communities. And so, what I think this device is going to do is to help us identify what is this microenvironment and to characterize that. And then, from there, to know if [an individual’s] microbiome is leaning towards the disease state, or if it's already in a serious or dangerous situation, to think about treatments that can lead to a more healthy state. So, I would just say it's really to have a window into the gut, and to be able to give personalized treatment for the patient. So, one application: I was thinking, I'm from the Boston area. So, one problem we have is getting a tick bite, right? After that, you could actually have to go through a very traumatic, antibiotic regime. I would imagine, in that case, you could [use the biosensor to] get the baseline [measurement], and then if you need to take these antibiotics, the doctors can follow how your microbiome is responding to that. Because one of the problems is that antibiotics changed the oxidation level [in the gut], and that really affects a lot the microbiome. To that point, for example, I get to know patients that they were athletes, and then, after antibiotic treatment, they have serious problems with obesity. Their life gets really messed up in many ways. And so, what I'm thinking is, if we could monitor earlier, there are a lot of ways that we could prevent that. We could give antioxidants; we could change the antibiotic. There are things that I think the doctor could be able to do and still do the treatment that we know. And of course, [although] we talk a lot about how much trouble antibiotics are, for certain things, we still need [them]. [The multi-diagnostic diaper] is one of my pet projects. I really love it. So yeah, basically, the issue is that the microbiome develops in the first 3 years. People even say like, 1000 days, you know. But there's really no way to monitor that. And now we're seeing that actually, if the microbiome gets affected, there are a lot of diseases that you will see in adult life. So, if we will be able to monitor the microbiome development, I really believe that we'll be able to prevent many of the diseases of tomorrow. What happens is that babies wear diapers. So, I thought it was really a very good overlap. We call that “wearables,” you know, like devices that you can wear, and then from there, measure something connected with health. So, in the diaper, I was excited because—different from the challenge with the ingested device, which was so tiny—here, we don't have the limitation of space. So, we could measure maybe 1000 different biomarkers and see how that builds over time. We can measure so many things. One could be just toxic elements that could be in the environment. I try to do very grounded science, and so, my question is always, ‘what’s the actionable thing to do?’ So, I'm thinking if there was a lot of toxicity, for example, in the carpet, or in the environment where you live, those are the easiest things to change, right? Then also, other things connecting more with the metabolism. [Often] the parents don't know that the kid has metabolic issues. So, before that starts to build and bring disease, it would be best if you could detect it as early as possible. From there, with symbiotics, we are thinking there are a lot of therapies that could engineer bacteria to produce the enzymes that the kid can’t produce. We could also [develop] other products, like for example, a t-shirt to measure the sweat. I'm also thinking more of the milk. I'm very excited about how the milk helps to build the microbiome in the right way. And that that's a huge, very exciting area for microbiologists. And so, we could also have nursing pads that also measure [whether] the mother has the right nutrients. My family, my grandparents were farmers, and in Argentina, really the time for harvest is very important. You can see how the city and really the whole country gets very active. And at that time [during a course Inda-Webb was taking at Cold Spring Harbor] in this course, I could see that with yeast we were having a lot of tools that would allow us to be much more productive in the field. And I thought, ‘Oh, this feels like a harvest system for yeast.’ Yes. So that was how it [Inda-Webb’s winning agar artwork, ‘Harvest System’] came out. I really love the people. Here, [at ASM Microbe 2023], I really found that how people are bringing so much energy and really wanted to engage and understand and just connect to this idea of human flourishing, right, giving value to something, and saying, ‘okay, we can actually push the limits of what we know.’ How beautiful is that? And you know, we can learn from that. That was very exciting. ASM Agar Art Contest Have you ever seen art created in a petri dish using living, growing microorganisms? That's agar art! ASM's annual Agar Art Contest is a chance for you to use science to show off your creative skills. Submissions Are Now Being Accepted! This year's contest theme is "Microbiology in Space." Head over to our Contest Details page to get all of the information about what you need to submit your entry. Submissions will be accepted until Oct. 28!

    Links for the Episode:

    Let us know what you thought about this episode by tweeting at us @ASMicrobiology or leaving a comment on facebook.com/asmfan.

    22 September 2023, 10:54 pm
  • 41 minutes 21 seconds
    Think Fungus Early: Preventing Angioinvasion Via Early Detection With Gary Procop

    Dr. Gary Procop, CEO of the American Board of pathology and professor of pathology at the Cleveland Clinic, Lerner School of Medicine discusses the importance of early detection and diagnosis in order to prevent fungal invasion leading to poor outcomes, particularly in immunocompromised patients. He emphasizes the importance of thinking fungus early, shares his passion for mentoring and talks about key updates in the recently released 7th Edition of Larone’s Medically Important Fungi.

    Ashley's Biggest Takeaways
    • Many invasive fungal infections are angiotrophic, meaning they actually grow toward, and into, blood vessels.
    • Once the fungus has penetrated the blood vessel, the blood essentially clots, causing tissue downstream from the blood clot to die (infarction).
    • When tissues that have been excised are viewed under the microscope, hyphal elements can be seen streaming toward or invading through the wall of the blood vessels. Once the clot forms, those hyphal elements can be seen in the center of the blood vessel where only blood should be.
    • Antifungals cannot be delivered to areas where the blood supply has stopped. Therefore, treatment requires a combined surgical and medical approach, and the process is very invasive.
    • Early detection can prevent these bad outcomes by allowing antifungal treatment to be administered before angioinvasion occurs.
    Links for the Episode:
    • Expand your clinical mycology knowledge with the recently released 7th edition of Larone's Medically Important Fungi: A Guide to Identification. Written by a new team of authors, Lars F. Westblade, Eileen M. Burd, Shawn R. Lockhart and Gary W. Procop, this updated edition continues the legacy of excellence established by founding author, Davise H. Larone. Since its first edition, this seminal text has been treasured by clinicians and medical laboratory scientists worldwide. The 7th edition carries forward the longstanding tradition of providing high-quality content to educate and support the identification of more than 150 of the most encountered fungi in clinical mycology laboratories. Get your copy today with $1 flat rate shipping within the U.S. or order the e-book! ASM members enjoy 20% off at checkout using the member promo code.

    Let us know what you thought about this episode by tweeting at us @ASMicrobiology or leaving a comment on facebook.com/asmfan.

    1 September 2023, 8:33 pm
  • 51 minutes 47 seconds
    Moldy Skin, Invasive Aspergillosis and the Rise of Candida auris With Shawn Lockhart

    From antifungal resistance to disaster microbiology and tales of visible mold growing across the skin of patients following a tornado in Joplin, Missouri, Dr. Shawn Lockhart, Senior Clinical Laboratory Advisor in the Mycotic Diseases Branch at the CDC talks all things fungi—complete with references to pop TV shows and the recently released 7th Edition of Larone’s Medically Important Fungi.

    Links mentioned:

     

     

     

    28 July 2023, 7:13 pm
  • 37 minutes 38 seconds
    Microbial Flavor Profiles for Bread and Wine Production With Kate Howell
    Dr. Kate Howell, Associate Professor of Food Chemistry at the University of Melbourne, Australia discusses how microbes impact the flavor and aroma of food and beverages and shares how microbial interactions can be used to enhance nutritional properties of food and beverage sources. Ashley's Biggest Takeaways
    • Saccharomyces means sugar-loving fungus.
    • Humans have similar olfactory structures and mechanisms as insects and are similarly attracted to fermenting or rotting fruits produced by Saccharomyces.
    • Research has shown that insects (and humans) prefer yeasts that produce more esters and aromatic compounds.
    • Palm wine is a product that is made from sap collected from palm trees (palm sap) across the tropical band of the world.
    • Fruity flavors appear to be less important to persistence of Saccharomyces strains in an Indonesian palm wine fermentation.
    • This may be because palm wine fermentation is very quick, generally 1-3 days often, with a maximum of 5 days for fermentation to be conducted.
    • Wineries, on the other hand, ferment annually (one fermentation per year/vintage), when the grapes are right. Grape wine fermentations can take 7 days to 2 weeks to complete.
    • So different selections likely take place between the 2 fermentation products.
    Featured Quotes:

    When we start drawing our lens on how microbes produce food for humans, we're coopting a process that happens quite naturally. Here I'll start off talking about Saccharomyces cerevisiae, the main fermenting yeast in food and beverage production, because it's one of the most studied organisms and was the first eukaryote to be sequenced. Saccharomyces cerevisiae, as the name implies, loves sugar, and it flourishes when there's a lot of sugar in the environment. Where is sugar found? In fruits, and that's done quite deliberately, because fruits develop sugars and flavors and aromas to attract a birds or insects or anything else that can carry their seeds elsewhere for dispersal. Now, Saccharomyces lies dormant in the environment in a spore before it encounters a sugar-loving environment. And then it replicates very quickly and tends to dominate fermentation. Humans have coopted that into our kitchens, into our meals, into our lives, and we use that process to produce food. As Saccharomyces starts to use this sugar, it balances up its metabolism. And as it does this, it produces aromas. These aromas have a lot of important characteristics. Humans love them, but insects also love them too. I've been interested in the yeasts that are found naturally in sourdough starters. Sourdough is a really interesting system. Because you've got yeast and bacteria interacting with one another. One of the things we are collaborating on with colleagues in France at Inrae, Dr. Delphine Sicard, is to understand some of the non-Saccharomyces yeasts that are naturally occurring in sourdough starters. So here we're looking at a collection of a yeast called Kazachstania humilis and trying to understand how it has adapted to the sourdough environment, how its sustained over time and how different global populations differ to one another. And this, of course, is of interest to the baking industry because not only do artisanal bakers have sort of an undiscovered wealth of biodiversity in their starters, baking companies also have an interest in using different sorts of flavors and bread for the commercial markets. The connection between a chemical profile and a person’s sensory preference isn't something that's complete and direct. So, in every method that we use, there's always caveats, but we try to correlate it. Let's start off with the chemical characterization. We use headspace sampling, analytical chemistry, separation with gas chromatography and identification with mass spectrometry. And we use different 2-dimensional methods to be able to understand what the very small compounds are, and to be able to identify them. We can semi-quantify these to be able to make comparisons between different fermentations. We know from wine fermentations and understanding preferences of wine that, in some cases, a particular increase, or an abundance of a particular compound, can be extremely attractive. And that might depend on the style of wine. What we've discovered through this process is that different people prefer different flavors. Makes sense, doesn't it? We like different things. But some really interesting results from our lab, show that people from different cultural backgrounds have different preferences. And here we're using here in Melbourne, I'm very lucky to work with some very talented postdocs and Ph.D. students from China, who have very different preferences for wine than an Australian does. Of course, Australians are quite heterogeneous in their in their cultural diversity as well. But there's certain flavors that our Chinese colleagues tend to prefer. So we decided to investigate this a little bit more. So for this study, we recruited wine experts from Australia, actively working in the wine industry, and also wine experts from China, working in the wine industry, and brought them to campus and ask them to rate their preferences on particular aromas and flavor characteristics that they noted in a panel of wines. These were very high-quality wines. We knew with wine experts, we couldn't just give them our loved wines, for example, which can be a little bit patchy quality wise. We asked them to rate their preferences, and then we collected saliva samples. The saliva samples were really interesting. We looked at 2 different aspects. We looked at the proteins that were present in the saliva samples. And we also looked at the oral microbiome. So the salivary microbiome—the bacteria, in particular—that are present. We found some really interesting things. And this has sparked a big area in our lab. So while the main enzymatic activities in the different groups of participants were quite similar—so esterase activity, Alpha amylase activity were similar—we found that there was a difference in the abundance of proline rich proteins and other potential flavor carrying compounds. Now, this is quite speculative. We'd like to know why this is the case. And so we're delving a little bit further into this area. What we do know though is that the abundances, especially if these proline rich proteins, is correlated with how people perceive the stringency. Now stringency is one of those characteristics in wine which is quite difficult to appreciate. It’s a lack of drying characteristic on the tongue and in the mouth and oral cavity. Some people find it quite attractive, others don't. But we found that the abundance of these polyproline-rich proteins correlates with stringency. This is, in fact, found in other studies because proline-rich proteins interact with polyphenols in the wine, and precipitate, which changes the sensation of astringency in the oral cavity. So here we've got a nice link to protein abundance and how people perceive flavor. But we're talking about microbiology, so maybe I should delve into the microbiological aspects of these studies as well. In that particular study that I'm referring to, we used wines that were naturally fermented, and that's the other variability that we need to consider when we think about wines from different areas. So, a natural fermentation, in a wine sense, is the grapes are harvested, and whatever microflora is present on the grapes will just ferment, and we often don't know what the main fermenting parties are. But if you contrast that with a majority of commercial wine that's produced, mainly in Australia, but also worldwide, it's inoculated with a selected strain of Saccharomyces or maybe 2 selected strains of Saccharomyces, and that tends to produce a fairly similar flavor profile, regardless of region. So, you can flatten out geographical characteristics and indications of flavor by inoculating a particular strain of yeast to ferment. That's not true with a natural fermentation, because that's conducted by the yeasts, and also the bacteria which just happened to be in the environment. So, I agree with you there is a lot of regional variation with wine flavor. And we can correlate that with regional diversity of yeast, but only if the wines are naturally fermented not if they're inoculated with a selected strain.  

    Links for the Episode:

    Let us know what you thought about this episode by tweeting at us @ASMicrobiology or leaving a comment on facebook.com/asmfan.

    14 July 2023, 10:12 pm
  • 42 minutes 26 seconds
    AncientBiotics With Steve Diggle and Freya Harrison

    Dr. Steve Diggle, ASM Distinguished Lecturer and Microbiology Professor at the Georgia Institute of Technology in Atlanta, Georgia and Dr. Freya Harrison, Associate Microbiology Professor at the University of Warwick in Coventry, U.K., discuss the science behind medieval medical treatments and the benefits of interdisciplinary research.

    Ashley's Biggest Takeaways
    • Diggle and Harrison met in Oxford, where Harrison was finishing up her Ph.D. and Diggle was doing background research for his work studying evolutionary questions about quorum sensing.
    • When Diggle began searching for a postdoc, Harrison, who had been conducting an independent fellowship at Oxford and studying social evolution, applied.
    • The AncientBiotics Consortium is a group of experts from the sciences, arts and humanities, who are digging through medieval medical books in hopes of finding ancient solutions to today’s growing threat of antibiotic resistance.
    • The group’s first undertaking was recreation and investigation of the antimicrobial properties of an ancient eyesalve described in Bald’s Leechbook, one of the earliest known medical textbooks, which contains recipes for medications, salves and treatments.
    • The consortium found that the eyesalve was capable of killing MRSA, a discovery that generated a lot of media attention and sparked expanded research efforts.  
    • The group brought data scientists and mathematicians into the consortium (work driven by Dr. Erin Connelly from the University of Warwick).
    • Together, the researchers began scouring early modern and medieval texts and turning them into databases.
    • The goal? To mathematically data mine these recipes see which ingredients were very often or non-randomly combined in ancient medical remedies.
    • The group recently published work showing synergistic antimicrobial effects of acetic acid and honey.
    • They are also working to pull out the active compounds from Bald’s eyesalve and make a synthetic cocktail that could be added to a wound dressings.

    Let us know what you thought about this episode by tweeting at us @ASMicrobiology or leaving a comment on facebook.com/asmfan.

    2 June 2023, 6:55 pm
  • 34 minutes
    Sending Yeast to the Moon With Jessica Lee
    Dr. Jessica Lee, scientist for the Space Biosciences Research Branch at NASA’s AIMS Research Center in Silicon Valley uses both wet-lab experimentation and computational modeling to understand what microbes really experience when they come to space with humans. She discusses space microbiology, food safety and microbial food production in space and the impacts of microgravity and extreme radiation when sending Saccharomyces cerevisiae to the moon. Ashley's Biggest Takeaways
    • Lee applied for her job at NASA in 2020.
    • Prior to her current position, she completed 2 postdocs and spent time researching how microbes respond to stress at a population level and understanding diversity in microbial populations.
    • She has a background in microbial ecology, evolution and bioinformatics.
    • Model organisms are favored for space research because they reduce risk, maximize the science return and organisms that are well understood are more easily funded.
    • Unsurprisingly, most space research does not actually take place in space, because it is difficult to experiment in space.
    • Which means space conditions must be replicated on Earth.
    • This may be accomplished using creative experimental designs in the wet-lab, as well as using computational modeling.
    Links for the Episode:

    Let us know what you thought about this episode by tweeting at us @ASMicrobiology or leaving a comment on facebook.com/asmfan.

    5 May 2023, 11:17 pm
  • 49 minutes 6 seconds
    Invisible Extinction: The Loss of Our Microbes with Maria Gloria Dominguez-Bello and Martin Blaser

    Dr. Maria Gloria Dominguez-Bello, Henry Rutgers Professor of Microbiome and Health and director of the Rutgers-based New Jersey Institute for Food, Nutrition and Health, and Dr. Martin Blaser, Professor of Medicine and Pathology and Laboratory Medicine and director of the Center for Advanced Biotechnology and Medicine at Rutgers (NJ) discuss the importance of preserving microbial diversity in the human microbiome.

    The pair, whose research was recently featured in a documentary The Invisible Extinction, are on a race to prevent the loss of ancestral microbes and save the bacteria that contribute to human health and well-being. 

    Links for the Episode:
    13 April 2023, 6:12 pm
  • More Episodes? Get the App
© MoonFM 2024. All rights reserved.