Hamilton Institute Seminars (iPod / small)

Hamilton Institute

The Hamilton Institute is a multi-disciplinary research centre established at the National University of Ireland, Maynooth in November 2001. The Institute seeks to provide a bridge between mathematics and its applications in ICT and biology.

  • 55 minutes 20 seconds
    Periodicity of Matrix Powers in Max Algebra
    Speaker: Dr. S. Sergeev Abstract: It is well known that the sequence of max-algebraic powers of irreducible nonnegative matrices is ultimately periodic. We express this periodicity in terms of CSR-representations and give new bounds on the transient time after which the max-algebraic powers become periodic.
    6 August 2013, 11:01 pm
  • 1 hour 12 minutes
    Very High Speed Networking in VMs and Bare Metal
    Speaker: Prof. L. Rizzo Abstract: In this talk I will give a survey of solutions and tools that we have developed in recent years to achieve extremely high packet processing rates in commodity operating systems, running on bare metal and on virtual machines. Our NETMAP framework supports processing of minimum size frames from user space at 10 Gbits per second (14.88 Mpps) with very small CPU usage. Netmap is hardware independent, supports multiple NIC types, and it does not require IOMMU or expose critical resources (e.g. device registers) to userspace. A libpcap library running on top of netmap gives instant acceleration to pcap clients without even the need to recompile applications. VALE is a software switch using the netmap API, which delivers over 20 Mpps per port, or 70 Gbits per second with 1500 byte packets. Originally designed to interconnect virtual machines, VALE is actually very convenient also as a testing tool and as a high speed IPC mechanism. More recently we have extended QEMU, and with a few small changes (using VAEL as a switch, paravirtualizing the e1000 emulator, and with small device driver enhancements), we reached guest to guest communication speeds of over 1 Mpps (with socket based clients) and 5 Mpps (with netmap based clients). NETMAP and VALE are small kernel modules, part of standard FreeBSD and also available as add-on for Linux. QEMU extensions are also available from the author and are being submitted to the qemu-devel list for inclusion in the standard distributions.
    4 July 2013, 11:01 pm
  • 39 minutes 16 seconds
    ROMA: Random Overlook Mastering ATFM
    Speaker: C. Lancia Abstract: Consider the arrival process defined by t_i=i + \xi_i, where \xi_i are i.i.d random variables. First introduced in the 50's, this arrival process is of remarkable importance in Air Traffic Flow Management and other transportation systems, where scheduled arrivals are intrinsically subject to random variations; other frameworks where this model has proved to be capable of a good description of actual job arrivals include health care and crane handling systems. This talk is ideally divided in two parts. In the first half, I will show through numerical simulations two of the most important features of the model, namely, the insensitivity with respect to the nature (i.e. the law) of the delays \xi_i and the extremely valuable goodness of fit of simulated queue length distribution against the empirical distribution obtained from actual arrivals at London Heathrow airport. Further, I will show that the congestion related to this process is very different from the congestion of a Poisson process. This is due to the negative autocorrelation of the process. In the second part, I will restrict the analysis to the case where the delays \xi_i are exponentially distributed. In this context, I will show some preliminary results on a possible strategy to find the stationary distribution of the queue length using a bivariate generating function.
    21 March 2013, 12:01 am
  • 1 hour 18 minutes
    Machine-to-Machine in Smart Cities & Smart Grids Vision, Technology & Applications
    Speaker: Dr. M. Dohler Abstract: The unprecedented communication paradigm of machine-to-machine (M2M), facilitating 24/7 ultra-reliable connectivity between a prior unseen number of automated devices, is currently gripping both industrial as well as academic communities. Whilst applications are diverse, the in-home market is of particular interest since undergoing a fundamental shift of machine-to-human communications towards fully automatized M2M. The aim of this presentation is thus to provide academic, technical and industrial insights into latest key aspects of wireless M2M networks, with particular application to the emerging smart city and smart grid verticals. Notably, I will provide an introduction to the particularities of M2M systems. Architectural, technical and privacy requirements, and thus applicable technologies will be discussed. Notably, we will dwell on the capillary and cellular embodiments of M2M in smart homes. The focus of capillary M2M, useful for real-time data gathering in homes, will be on IEEE (.15.4e) and IETF (6LoWPAN, ROLL, COAP) standards compliant low-power multihop networking designs; furthermore, for the first time, low power Wifi will be dealt with and positioned into the eco-system of capillary M2M. The focus of cellular M2M will be on latest activities, status and trends in leading M2M standardization bodies with technical focus on ETSI M2M and 3GPP LTE-MTC. Open technical challenges, along with the industry’s vision on M2M and its shift of industries, will be discussed during the talk.
    21 January 2013, 12:01 am
  • 59 minutes 16 seconds
    State Constrained Optimal Control
    Speaker: Prof. R. Vinter Abstract: Estimates on the distance of a nominal state trajectory from the set of state trajectories that are confined to a closed set have an important unifying role in optimal control theory. They can be used to establish non-degeneracy of optimality conditions such as the Pontryagin Maximum Principle, to show that the value function describing the sensitivity of the minimum cost to changes of the initial condition is characterized as a unique generalized solution to the Hamilton Jacobi equation, and for numerous other purposes. We discuss the validity of various presumed distance estimates and their implications, recent counter-examples illustrating some unexpected pathologies and pose some open questions.
    29 November 2012, 12:01 am
  • 1 hour 18 minutes
    Effective Information Delivery Through Opportunistic Replication in Wireless Networks
    Speaker: Prof. L. Tassiulas Abstract: Increased replication of information is observed in modern wireless networks either in pre-planned content replication schemes or through opportunistic caching in intermediate relay nodes as the information flows to the final destination or through overhearing of broadcast information in the wireless channel. In all cases the available other node information might be used to effectively increase the efficiency of the information delivery process. We will consider first an information theoretic perspective and present a scheme that exploits the opportunistically available overheard information to achieve the Shannon capacity of the broadcast erasure channel. Then we will consider information transport in a multi-hop flat wireless network and present schemes for spatial information replication based on popularity, in association with any-casting routing schemes, that achieve asymptotically optimal performance.
    28 November 2012, 12:01 am
  • 1 hour 1 minute
    Dynamics of Some Cholera Models
    Speaker: Prof. P. van den Driessche Abstract: The World Health Organization estimates that there are 3 to 5 million cholera cases per year with 100 thousand deaths spread over 40 to 50 countries. For example, there has been a recent cholera outbreak in Haiti. Cholera is a bacterial disease caused by the bacterium Vibrio cholerae, which can be transmitted to humans directly by person to person contact or indirectly via the environment (mainly through contaminated water). To better understand the dynamics of cholera, ageneral ordinary differential equation compartmental model is formulated that incorporates these two transmission pathways as well as multiple infection stages and pathogen states. In the model analysis, some matrix theory is used to derive a basic reproduction number, and Lyapunov functions are used to show that this number gives a sharp threshold determining whether cholera dies out or becomes endemic. In the absence of recruitment and death, a final size equation or inequality is derived, and simulations illustrate how assumptions on cholera transmission affect the final size of the epidemic. Further models that incorporate temporary immunity and hyperinfectivity using distributed delays are formulated, and numerical simulations show that oscillatory solutions may occur for parameter values taken from cholera data in the literature.
    22 November 2012, 12:01 am
  • 59 minutes 32 seconds
    Distributed Opportunistic Scheduling: A Control Theoretic Approach
    Speaker: Prof. A. Banchs Abstract: Distributed Opportunistic Scheduling (DOS) techniques have been recently proposed to improve the throughput performance of wireless networks. With DOS, each station contends for the channel with a certain access probability. If a contention is successful, the station measures the channel conditions and transmits in case the channel quality is above a certain threshold. Otherwise, the station does not use the transmission opportunity, allowing all stations to recontend. A key challenge with DOS is to design a distributed algorithm that optimally adjusts the access probability and the threshold of each station. To address this challenge, in this paper we first compute the configuration of these two parameters that jointly optimizes throughput performance in terms of proportional fairness. Then, we propose an adaptive algorithm based on control theory that converges to the desired point of operation. Finally, we conduct a control theoretic analysis of the algorithm to find a setting for its parameters that provides a good tradeoff between stability and speed of convergence. Simulation results validate the design of the proposed mechanism and confirm its advantages over previous proposals.
    9 October 2012, 11:00 pm
  • 52 minutes 44 seconds
    Large-scale urban vehicular networks: mobility and connectivity
    Speaker: Dr. M. Fiore Abstract: Vehicular networks are large scale communication systems that exploit wireless technologies to interconnect moving cars. Vehicular networks are envisioned to provide drivers with real time information on potential dangers, on road traffic conditions, and on travel times, thus improving road safety and traffic efficiency. Direct vehicle-to-vehicle communication is also foreseen to enable nonsafety applications, such as pervasive urban sensing and fast data dissemination throughout metropolitan regions. The quantity and relevance of potential usages make pervasive inter-vehicular communication one of the highest impact future applications of the wireless technology, which explains the growing interest of both industry and academy towards this research field. In this talk, we will address two intertwined topics in vehicular networks: the modeling of vehicular mobility in large scale urban environments and the topological characterization of the vehicular network built on top of such a mobility. Both are fundamental, yet often oversought, aspects of vehicular networking, defining the strengths and weaknesses of the vehicle-to-vehicle communication system and dictating the rules for the design of dedicated protocols.
    4 October 2012, 11:00 pm
  • 43 minutes 6 seconds
    Learning Cell Cycle Variability at the Level of each phase
    Speaker: Dr. T. Weber Abstract: Inter-cellular variability in the duration of the cell cycle is a well documented phenomena which has been integrated into mathematical models of cell proliferation since the 70’s. Here I present a minimalist stochastic cell cycle model that allows for inter-cellular variability at the level of each single phase, i.e. G1, S and G2M. Fitting this model to flow cytometry data from 5-bromo-2'-deoxyuridine (BrdU) pulse labeling experiments of two different cell lines shows that the mean field predictions mimic closely the measured average kinetics. However as indicated by bayesian inference, scenarios with deterministic or purely stochastic waiting times especially in the G1 phase seem to explain the data equally well. To resolve this uncertainty a novel experimental proto col is proposed able to provide sufficient information about cell kinetics to fully determine both the inter-cellular average and variance of the duration of each of the phases. Finally I present a case in which this model is extended in order to estimate cell cycle parameters in germinal centers. The latter play a central role in the generation of highly effective antibodies that protect our body against invading pathogens.
    26 September 2012, 11:00 pm
  • 59 minutes 22 seconds
    EPT functions: Non-negativity analysis, Levy processes and Financial applications
    Speaker: Prof. B. Hanzon Abstract: Exponential Polynomial Trigonometric (EPT) functions are being considered as probability density functions. A specific matrix-vector representation is proposed for doing calculations with these functions. We investigate when these functions are non-negative and under which conditions the density functions are infinitely divisible--in which case there is an associated Levy process. Application to option price computations in finance will be presented. For background information on this topic the website www.2-ept.com can be considered.
    16 September 2012, 11:00 pm
  • More Episodes? Get the App
About Hamilton Institute Seminars (iPod / small)
© MoonFM 2024. All rights reserved.